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2 Max Planck Institute for Intelligent Systems, Tübingen
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Figure 1. From a sequence of blurry inputs (lower row) our learning-based approach for blind burst-deblurring reconstructs fine details,

which are not recovered by recent state-of-the-art methods like FBA [6]. Both methods feature similar run-time.

Abstract

As handheld video cameras are now commonplace and

available in every smartphone, images and videos can be

recorded almost everywhere at anytime. However, taking

a quick shot frequently yields a blurry result due to un-

wanted camera shake during recording or moving objects in

the scene. Removing these artifacts from the blurry record-

ings is a highly ill-posed problem as neither the sharp image

nor the motion blur kernel is known. Propagating informa-

tion between multiple consecutive blurry observations can

help restore the desired sharp image or video. In this work,

we propose an efficient approach to produce a significant

amount of realistic training data and introduce a novel re-

current network architecture to deblur frames taking tem-

poral information into account, which can efficiently handle

arbitrary spatial and temporal input sizes.

1. Introduction

Videos captured by handheld devices usually contain mo-

tion blur artifacts caused by a combination of camera shake

(ego-motion) and dynamic scene content (object motion).

With a fixed exposure time any movement during record-

ing causes the sensor to observe an averaged signal from

different points in the scene. A reconstruction of the sharp

frame from a blurry observation is a highly ill-posed prob-

lem, denoted as blind or non-blind deconvolution depending

on whether camera-shake information is known or not.

In video and image burst deblurring the reconstruction pro-

cess for a single frame can make use of additional data from

neighboring frames. However, the problem is still challeng-

ing as each frame might encounter a different camera shake

and the frames might not be aligned.

For deconvolution of a static scene neural networks have

been successfully applied using single frame [2, 21, 22] and

multi-frame deblurring [30, 33, 5].

All recent network architectures for multi-frame and video

deblurring [30, 24, 17, 2] require the input to match a fixed

temporal and spatial size. Handling arbitrary spatial dimen-

sions is theoretically possible by fully convolutional net-

works as done in [24], but they rely on a sliding window

approach during inference due to limited memory on the

GPU. For these approaches, the reconstruction of one frame

is not possible by aggregating the information of longer se-

quences than the network was trained for.

In contrast, our approach is a deblurring system that can

deal with arbitrary lengths of sequences while featuring a

fully convolutional network that can process full resolution

video frames at once. Due to its small memory footprint it

removes the need for sliding window approaches during in-

ference, thus drastically accelerating the deblurring process.

For processing arbitrary sequences we rely on a recurrent

scheme. While convolutional LSTMs [18] offer a straight-
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forward way to replace spatial convolutions in conventional

architectures by recurrent units, we found them challenging

and slow to train. Besides vanishing gradients effects they

require a bag of tricks like carefully tuned gradient clipping

parameters and a special variant of batch normalization. In

order to circumvent these problems, we introduce a new re-

current encoder-decoder network. In the network we in-

corporate spatial residual connections and introduce novel

temporal feature transfer between subsequent iterations.

Besides the network architecture, we further create a novel

training set for video deblurring as the success of data-

driven approaches heavily depends on the amount and qual-

ity of available realistic training examples. As acquiring

realistic ground-truth data is time-consuming, we success-

fully generate synthetic training data with literally no acqui-

sition cost and demonstrate improved results and run time

on various benchmark sets as for example demonstrated in

Figure 1.

2. Related Work

The problem of image deblurring can be formulated as a

non-blind or a blind deconvolution version, depending on

whether information about the blur is available or not. Blind

image deblurring (BD) is quite common in real-world ap-

plications and has seen considerable progress in the last

decade. A comprehensive review is provided in the recent

overview article by Wang and Tao [29]. Traditional state-

of-the-art methods such as Sun et al. [26] or Michaeli and

Irani [16] use carefully chosen patch-based priors for sharp

image prediction. Data-driven methods based on neural net-

works have demonstrated success in non-blind restoration

tasks [21, 31, 20] as well as for the more challenging task

of BD where the blur kernel is unknown [22, 25, 2, 10, 27].

Removing the blur from moving objects has been recently

addressed in [17].

To alleviate the ill-posedness of the problem [7], one might

take multiple observations into account. Hereby, observa-

tions of a static scene, each of which is differently blurred,

serve as inputs [33, 3, 1, 23, 35, 9]. To incorporate video

properties such as temporal consistency the methods of

[32, 34, 13, 12] use powerful and flexible generative models

to explicitly estimate the unknown blur along with predict-

ing the latent sharp image. However, this comes at the price

of higher computation cost, which typically requires tens of

minutes for the restoration process.

To accomplish faster processing times Delbracio and Sapiro

[6] have presented a clever way to average a sequence of

input frames based on Lucky Imaging methods. They pro-

pose to compute a weighted combination of all aligned input

frames in the Fourier domain which favors stable Fourier

coefficients in the burst containing sharp information. This

yields much faster processing times and removes the re-

quirement to compute the blur kernel explicitly.

Quite recently, Wieschollek et al. in [30] introduce an end-

to-end trainable neural network architecture for multi-frame

deblurring. Their approach directly computes a sharp image

by processing the input burst in a patch-wise fashion, yield-

ing state-of-the-art results. It has been shown, that this even

enables treating spatially varying blur. The related task of

deblurring of videos has been approached by Su et al. [24].

Their approach uses the U-Net architecture [19] with skip

connection to directly regress the sharp image from an in-

put burst. Their fully convolutional neural network learns

an average of multiple inputs with reasonable performance.

Unfortunately, both learning methods [30, 24] require to fix

the temporal input size at training time and they are limited

to a patch-based inference by the network layout [30] and

memory constraints [24].

3. Method

Overview. In our approach a fully-convolutional neural

network deblurs a frame I using information from previ-

ous frames I−1, I−2, . . . in an iterative, recurrent fashion.

Incorporating a previous (blurry) observation improves the

current prediction for I step by step. We will refer to these

steps as deblur steps. Hence, the complete recurrent de-

blur network (RDN) consists of several deblur blocks (DB).

We use weight-sharing between these to reduce the total

amount of used parameters and introduce novel temporal

skip connections between these deblur blocks to propagate

latent features between the individual temporal steps. To

effectively update the network parameters we unroll these

steps during training. At inference time, the inputs can have

arbitrary spatial dimensions as long as the processing of a

minimum of two frames fits on the GPU. Moreover, the re-

current structure allows us to include an arbitrary number

of frames helping to improve the output with each itera-

tion. Hence, there is no need for padding burst sequences to

match the network architecture as e.g. in [30].

3.1. Generating realistic ground­truth data

Training a neural network to predict a sharp frame of a

blurry input requires realistic training data featuring these

two aligned versions for each video frame: a blurry ver-

sion serving as the input and an associated sharp version

serving as ground-truth. Obtaining this data is challenging

as any recorded sequence might suffer from the described

blur effects itself. Recent work [24, 17] have built a train-

ing data set by recording videos captured at 240fps with

a GoPro Hero camera to minimize the blur in the ground-

truth. Frames from these high-fps videos are then processed

and averaged to produce plausible motion blur synthetically.

While they made significant effort to capture a broad range

of different situations, this process is limited in the num-

ber of recorded samples, in the variety of scenes and in the

used recording devices. For fast moving objects artifacts
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Figure 2. Snapshot of the training process. Each triplet shows

the input with synthetic blur (left), the current network prediction

(middle) and the associated ground-truth (right). All images are

best viewed at higher resolution in the electronic version.

are likely to arise due to the finite framerate. We also tested

this method for generating training data with a GoPro Hero

camera but found it hard to produce a large enough dataset

of sharp ground-truth videos of high quality. Rather than

acquiring training data manually we propose to acquire and

filter data from online media.

Training data. As people love to share and rate multime-

dia content, each year millions of video clips are uploaded

to online platforms like YouTube. The video content ranges

from short clips to professional videos of up to 8k resolu-

tion. From this source, we have collected videos with 4k-8k

resolution and a frame rate of 60fps or 30fps. The video

content ranges from movie trailers, sports events, advertise-

ments to videos on everyday life. To remove compression

artifacts and to obtain slightly sharper ground-truth we re-

sized all collected videos by factor 1/4 respectively 1/8, fi-

nally obtaining full-HD resolution.

Consider such a video with frames (ft)t=1,2,...,T . For each

frame pair (ft, ft+1) at time t we compute n additional syn-

thetical subframes between the original frames ft, ft+1 re-

sulting in a high frame rate video

(. . . , f
(n−1)
t−1 , f

(n)
t−1, ft, f

(1)
t , f

(2)
t , . . . , f

(n−1)
t , f

(n)
t , ft+1).

All subframes are computed by blending between the neigh-

boring original frames ft and ft+1 warping both frames

using the optical flow in both directions wft→ft+1
and

wft+1→ft . Given both flow fields, we can generate an ar-

bitrary number of subframes. For practical purposes, we

set n = 40, thus implying an effective framerate of more

than 1000fps without suffering from low signal-to-noise ra-

tio (SNR) due to short exposure times.

We want to stress that only parts of videos with reasonably

sharp frames serve as ground-truth. For those the estima-

tion of optical flow to approximate motion blur is possible

and sufficient. The sub-frames are averaged to generate a

plausible blurry version

bt =
1

1 + 2L

(

ft +
L
∑

ℓ=1

f
(n−ℓ)
t−1 + f

(ℓ)
t

)

(1)

for each sharp frame ft. We use a mix of 20 and 40 for L

to create different levels of motion blur. The entire compu-

tation can be done offline on a GPU. For all video parts that

passed our sharpness test (5.43 hours in total) we produce

a ground-truth video and blurry version both at 30 fps in

full-HD. Besides the unlimited amount of training data an-

other major advantage of this method is that it incorporates

different capturing devices naturally. Further, the massive

amount of available video content allows us to tweak all

thresholds and parameters in a conservative way to reject

video parts of bad quality (too dark, too static) without af-

fecting the effective size of the training data. Though the

recovered optical flow is not perfect we observed an accept-

able quality of the synthetically motion blurred dataset. To

add variety to the training data we crop random parts from

the frames and resize them to 128×128px. Figure 2 shows

a few random examples from our training dataset.

3.2. Handling the time dimension

The typical input shape required by CNNs in computer vi-

sion tasks is [B,H,W,C] – batch size, height, width and

number of channels. However, processing series of images

includes a new dimension: time. To apply spatial convo-

lution layers the additional dimension has to be “merged”

either into the channel [B,H,W,C · T ] or batch dimen-

sion [B · T,H,W,C]. Methods like [24, 30] stack the

time along the channel dimension rendering all information

across the entire burst available without further modifica-

tion. This comes at the price of removing information about

the temporal order. Further, the number of input frames

needs to be fixed before training, which limits their appli-

cation. Longer sequences could only be processed with

workarounds like padding and sliding window processing.

On the other hand, merging the time-dimension into the

batch dimension would give flexibility at processing differ-

ent length of sequences. But the processing of each frame is

then entirely decoupled from its adjacent frames – no infor-

mation is propagated. Architectures using convLSTM [18]

or convGRU cells [4] are designed to naturally handle time

series but they would require several tricks [15, 28] dur-

ing training. We tried several architectures based on these

recurrent cells but found them hard to train and observed

hardly any improvement even after two days of training.

3.3. Network Architecture

Instead of including recurrent layers, we propose to formu-

late the entire network as a recurrent application of deblur
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DB DB DBI := Î(0) Î(1) Î(2) Î(3) . . . Î(N)

I−1 I−2 I−3 I−4

L1 = ‖I(gt) − Î(1)‖2, L2 = ‖I(gt) − Î(2)‖2, L3 = ‖I(gt) − Î(3)‖2, LN = ‖I(gt) − Î(N)‖2

DB

Î(k−1)

Î−k

Î(k)

+ +
+

+
+

+

+

+

+

Figure 3. Given the current deblurred version of I each deblur block DB produces a sharper version of I using information contributed

by another observation I
−k. The deblur block follows the design of an encoder-decoder network with several residual blocks with skip-

connections. To share learned features between various observations, we propagate some previous features into the current DB (green).

blocks and successively process pairs of inputs (target frame

and additional observation), which gives us the flexibility to

handle arbitrary sequence lengths and enables information

fusion inside the network.

Consider a single deblur step with the current prediction I
of shape [H,W,C] and blurry observation I−k. Inspired

by the work of Ronneberger et al. [19] and the recent suc-

cess of residual connections [8] we use an encoder-decoder

architecture in each deblur block, see Figure 3. Hereby,

the network only consists of convolution and transpose-

convolution layers with batchnorm [11]. We applied the

ReLU activation to the input of the convolution layers C·,·

as proposed in [8].

The first trainable convolution layer expands the 6-channel

input (two 128×128px RGB images during training) into 64

channels. In the encoder part, each residual block consists

of a down-sampling convolution layer ( ) followed by three

convolution layers ( ). The down-sampling layer halves

the spatial dimension with stride 2 and doubles the effec-

tive number of channels [H,W,C] → [H/2,W/2, C · 2].
During the decoding step, the transposed-convolution layer

( ) inverts the effect of the downsampling [H,W,C] →
[2 · H, 2 · W,C/2]. We use a filter size of 3 × 3 / 4 × 4
for all convolution/transposed-convolution layers. In the be-

ginning an additional residual block without downsampling

accounts for resolving larger blur by providing a larger re-

ceptive field.

To speed up the training process, we add skip-connections

between the encoding and decoding part. Hereby, we add

the extracted features from the encoder to the related de-

coder part. This enables the network to learn a residual

between the blurry input and the sharp ground-truth rather

than ultimately generating a sharp image from scratch.

Hence, the network is fully-convolutional and therefore al-

lows for arbitrary input sizes. Please refer to Table 1 for

more details.

Table 1. Network Specification. Outputs of layers marked with *

are concatenated with features from previous deblur blocks except

in the first step. This doubles the channel size of the output. The

blending layers B
·,· are only used after the first deblur step.

layer filter size stride output shape

A0,1 3× 3× 64 2 H/1 × H/1 × 64

C1,1 3× 3× 64 2 H/2 × H/2 × 64
C1,2−C1,4 3× 3× 64 1 H/2 × H/2 × 64

C2,1−C2,4 3× 3× 64 1 H/2 × H/2 × 64

C3,1 3× 3× 128 2 H/4 × H/4 × 128
C3,1−C3,4 3× 3× 128 1 H/4 × H/4 × 128

C4,1 3× 3× 256 2 H/8 × H/8 × 256*

B4,2 1× 1× 256 1 H/8 × H/8 × 256
C4,3−C4,5 3× 3× 256 1 H/8 × H/8 × 256

C5,1 4× 4× 128 1/2 H/4 × H/4 × 128*

B5,2 1× 1× 128 1 H/4 × H/4 × 128
C5,3−C5,5 3× 3× 128 1 H/4 × H/4 × 128

C6,1 4× 4× 64 1/2 H/2 × H/2 × 64*

B6,2 1× 1× 64 1 H/2 × H/2 × 64
C6,3−C6,5 3× 3× 64 1 H/2 × H/2 × 64

C7,1 4× 4× 64 1/2 H/1 × H/1 × 64
C7,2 4× 4× 6 1 H/1 × H/1 × 6
I(k) 3× 3× 3 1 H/1 × H/1 × 3

Skip connections as temporal links. We also propose to

propagate latent features between subsequent deblur blocks

over time. For this, we concatenate specific layer activations

from a previous iteration with some from the current deblur

block. These skip connections are illustrated as green lines

in Figure 3. Further, to reduce the channel dimension to

match the required input shape for the next layer, we use

a 1 × 1 convolution layer, denoted as blending layer B·,·.
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This way the network can learn a weighted sum by blending

between the current features and propagated features from

the previous iteration. This effectively halves the channel

dimension. One advantage of such a construction is that we

can disable these skip connections in the first deblur block

and only apply these in subsequent iterations. Further, they

can be applied to a pre-trained model without temporal skip

connections.

Training details. Aligning inputs using homography ma-

trices or estimated optical flow information can be error-

prone and slows down the reconstruction preventing time-

critical applications. Therefore, we trained the network di-

rectly on a sequence of unaligned frames featuring large

camera shakes. To further challenge the network we add

artificial camera shake to each blurry frame from syn-

thetic PSF kernels on-the-fly. These PSF kernels of sizes

7×7, 11×11, 15×15 are generated by a Gaussian process

simulating camera shake. To account for the effect of van-

ishing gradients, we force the output I(k) of each deblur

block to match the sharp ground-truth I(gt) in the corre-

sponding loss term Lk (see Figure 3).

We use ADAM [14] for minimzing the total loss

L =
∑4

k=1 Lk for sequences of 5 inputs. We leave the op-

timizer’s default parameters (β1 = 0.9, β2 = 0.999) un-

changed and use 5e-3 as the initial learning rate.

4. Experiments

We evaluate the performance of our proposed method in

several experiments on challenging real-world examples. In

addition, a comprehensive comparison to recent methods is

given using the implementation provided by the respective

authors. During inference we pass a pair of frames with res-

olution 720p into a deblur block iteratively. Each iteration

takes approximately 0.57 seconds on an NVIDIA Titan X.

For any larger frame sizes, we tile the input frames. The net-

work was trained exclusively on our synthetically blurred

dataset featuring both motion blur and camera shake. All

provided results in the section are based on benchmark

sets from previous methods. Our recurrent deblur net-

work (RDN) generalizes to different kinds of unseen videos

and recording devices. Please note, we include the full-

resolution images and frames from videos in the supple-

mentary material.

4.1. Burst Deblurring

In burst deblurring the task is to restore a sharp frame from

an entire sequence of aligned images. The sequence is usu-

ally taken by a single camera and only suffers from station-

ary blur caused by ego-motion. In our data-driven approach,

we process each observation which finally produces signif-

icantly better results than previous proposed methods, e.g.

consider the scene provided in Figure 5. Notably, ours is

the first, which is able to restore the lettering below the li-

cense plate in Figure 8. Also for the wood scene in Figure 9

sharper results are produced.

random shot FourierNet FBA RDN (ours)

Figure 8. In contrast to previous state-of-the-art methods, our re-

current approach is able to even recover the subtle writing on the

bottom of this number plate. It further reflects the original color

tones from the random blurry shot.

Further, our network is applied to input images featuring

spatially varying blur, which is quite common in real-world

examples due to imperfect lenses or turbulences. Figure 4

shows a comparison to the Efficient Filter Flow framework

(EFF) [9] which is explicitly designed to model this kind of

blur. The results demonstrate two features of our approach:

it is able to generalize to this kind of blur – no patch-wise

processing as in [30] was necessary – and due to its recur-

rent nature it can deal and exploit almost arbitrary many

frames for deblurring one image. However, we observe in

the top row of Figure 4 that after adding more than 10 input

images local contrast might saturate, potentially resulting

also in a small color shift. A workaround might be some

color-transfer method [30].

4.2. Video Deblurring

In contrast to the previous task, videos are usually de-

graded by additional blur caused by object motion. More-

over, any deblurring approach has to solve the underlying

frame alignment problem. Such an alignment step can be

done offline, e.g. using a homography matrix or by estimat-

ing optical flow fields to warp the frames to the reference

frame. While this kind of preprocessing delivers an easier

task to the network, it might introduce artifacts which the

network later has to account for. The approach of Su et

al. [24] (DBN) extensively use preprocessing for alignment

and directly train their networks to solve both tasks: deblur-

ring and removing artifacts. Our approach does not require

any preprocessing and is therefore faster while producing

comparable or better results. Figure 10 shows a compari-

son between the DBN in [24] and our network directly ap-

plied to the input. Significant improvement in sharpness by

our method can be observed on the trousers, the hair of the

woman or the hand of the baby, just to highlight a few. Ar-

tifacts due to the alignment procedure in the approach by

Su et al. are visible on the lit wall in the Starbucks scene,

for the cyclist in the second last row and in the piano scene,
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random RDN EFF GT

Figure 4. Recovery from image bursts with spatially varying blur. Reconstructions of a single image using 2 to 17 input frames are shown.

Although the network has only seen training sequences of length 5, due to its recurrent structure it can handle longer sequences and further

improve the prediction. However, too many input frames might introduce oversharpening. A random shot from the input is given on the

left and the ground-truth on the right. We also compare against the EFF reconstructions from Hirsch et al. [9], which is dedicated to this

task.

random shot FourierNet FBA RDN (ours)RDN (full)
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Figure 5. Comparison to state-of-the-art multi-frame blind deconvolution algorithms FourierNet [30], FBA [6] and ours (RDN) on real-

world data for static scenes of low-light environments. RDN recovers significantly more detail.
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Figure 6. Visualization of features propagated along the temporal

skip connections. The additional channels are projected to 2D and

encoded in Hue colorspace. Apparently, the network learned to

mark regions which might benefit from deblurring.

1 level 2 levels 3 levels 1 level 2 levels 3 levels 1 level 2 levels 3 levels

Figure 7. Multi-scale input for large motion blur. We show the

deblurred results with tradition single-scale input (1 level) or ex-

tending the input sequence with upscaled version of the deblurred

results at half respectively quarter resolution.

where the white keys are distorted. While ours is competi-

tive when removing small motion, their optical flow based

methods produces slightly sharper results when the camera

motion is severe as seen on the road markings in the in the

“bicycle” scene. Due to the limited capacity of the trained

networks neither their nor our approach is fully capable of

recovering the strong motion blur of very fast motion.

Using multi-scale input. While our network has been

trained on sequences of constant spatial resolution only,

we experimented with feeding multi-scale input to recover

strong object motion. In particular, we deblurred the entire

input sequence at different levels n = 1, 2, 3 with 1/2n−1

resolution and then up-scaled the predicted result to obtain

an additional new input frame for the sequence at the higher

scale. While it partly helped to deal with larger motion blur

which is not covered in the training data, the upsampling

can produced artifacts which the network was not trained

for. Figure 7 shows such results. Although the bike became

significant sharper, the static parts of the scene rendered a

“comic style” appearance. Directly training such a multi-

scale network seems to be an interesting research direction.

Time-structure. Our network architecture consists of an

“anti-causal” structure deblurring one frame by considering

the original previous frames in a sequence-to-one mapping.

Î = DB(DB(I, I−1), . . .). We experimented with sev-

eral sequence-to-sequence mapping approaches producing

a sharp frame in an online way Ît = DB(It, Ît−1). We

noticed no learning benefit which might be caused by the

limited capability of propagating temporal information.

DBN (plain) DBN (homog) DBN (OF) RDN (ours, plain)
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Figure 10. Video deblurring results. Applied to successive video

frames with camera shake and motion blur our network produces

favorable results compared to the approach by Su et al. [24]

(DBN). While their performance depends on the type of offline

preprocessing to align the individual frames (plain, homography,

optical flow) our method operates directly on the unaltered input

frames. As the preprocessing might introduce artifacts such as

blur, smearing etc. their network learned to partially correct those,

which sometimes fails. The strong motion blur of the cyclist is not

correctly deblurred by any existing method.
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FourierNet FBA

fastMBD RDN (ours)

Figure 9. Performance of multi-frame blind deconvolution algorithms FourierNet [30], FBA [6] and ours (RDN) on a forest scene. The

structure of the leaves and the bark of the trees is significantly sharper.

Identifying valuable temporal information. One novel

feature of our designed network architecture are the tempo-

ral skip connections (Figure 3 in green) acting as informa-

tion links between subsequent deblur blocks. As we do not

add constraints to these links, we essentially allow the net-

work to propagate whatever feature information seems to be

beneficial for the next deblur block. To illustrate these tem-

poral information, we visualized the respective layer activa-

tion in Figure 6. The illustration suggests that the network

uses this opportunity to propagate image locations which

might profit from further deblurring (yellowish parts).

5. Conclusion

We presented a novel recurrent network architecture – re-

current deblurring network (RDN) – for the efficient re-

moval of blur caused by both ego and object motion from a

sequence of unaligned blurry frames. Our proposed model

enables fast processing of image sequences of arbitrary

length and size. We introduce the concept of temporal

skip connections between consecutive deblur blocks which

allow for efficient information propagation across several

time steps. Our proposed network iteratively improves the

sharpness of a target frame given various blurry observa-

tions.

Furthermore, we presented a novel method for the efficient

generation of a vast number of blurry/sharp video sequence

pairs, which is required to train learning based methods like

the one we described. Using bidirectional optical flow be-

tween consecutive frames, our method creates synthetically

intermediate frames to fake high-speed video recordings.

By averaging multiple consecutive frames we can emulate

longer exposure times and thus motion blur in a realistic

way. Hence, making use of the abundance of high-quality

videos available on YouTube, we illustrated the generation

process of an arbitrary amount of training data.
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