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Abstract

We propose Stereo Direct Sparse Odometry (Stereo

DSO) as a novel method for highly accurate real-time vi-

sual odometry estimation of large-scale environments from

stereo cameras. It jointly optimizes for all the model pa-

rameters within the active window, including the intrin-

sic/extrinsic camera parameters of all keyframes and the

depth values of all selected pixels. In particular, we propose

a novel approach to integrate constraints from static stereo

into the bundle adjustment pipeline of temporal multi-view

stereo. Real-time optimization is realized by sampling pix-

els uniformly from image regions with sufficient intensity

gradient. Fixed-baseline stereo resolves scale drift. It also

reduces the sensitivities to large optical flow and to rolling

shutter effect which are known shortcomings of direct im-

age alignment methods. Quantitative evaluation demon-

strates that the proposed Stereo DSO outperforms existing

state-of-the-art visual odometry methods both in terms of

tracking accuracy and robustness. Moreover, our method

delivers a more precise metric 3D reconstruction than pre-

vious dense/semi-dense direct approaches while providing a

higher reconstruction density than feature-based methods.

1. Introduction

1.1. Real­time Visual Odometry

While traditionally robotic systems such as self-driving

cars have been largely relying on Laser or Lidar to actively

sense their environment and perform self localization and

mapping, more recently camera-based SLAM and odom-

etry algorithms have witnessed a drastic boost in perfor-

mance. Although such passive sensors require a sufficiently

illuminated and textured scene to infer 3D structure and mo-

tion, they comprise several advantages including higher res-

olution, higher sensing range and sensing rate as well as

lower weight, size and hardware cost. This makes them

∗These authors contributed equally.

Figure 1. Results of Stereo Direct Sparse Odometry on sequence

00 of the KITTI Dataset. On top is the estimated camera trajectory.

To distinguish the sparsity from previous dense or semi-dense di-

rect methods, we show the depth maps used for tracking in the

middle. An example of a reconstructed scene is shown on the bot-

tom.

far more versatile – the smaller size and weight, for exam-

ple, enable applications such as visual-inertial autonomous

navigation of nanocopters [6]. As a result, there is a huge
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demand for real-time capable visual odometry and visual

SLAM algorithms. Among the most desirables proper-

ties are maximal accuracy, robustness (to changes in scene

structure, lighting and faster motion) and density of the re-

constructed environment. In this paper, we propose what

we believe to be the currently most accurate and robust real-

time visual odometry method.

1.2. Related Work

The first real-time capable visual SLAM and odometry

systems were pioneered around 2000 [2, 24, 5, 3]. The key

idea underlying these structure and motion techniques is to

select a set of keypoints (typically corner-like structures),

track them across frames and jointly infer their 3D loca-

tion and the camera motion. More recently, we have wit-

nessed a boost of increasingly performant solutions stem-

ming from numerous advances both in computing hardware

and in algorithmic sophistication. For example, Klein and

Murray [17] parallelized the motion and 3D structure es-

timations. Strasdat et al. proposed to expand the concept

of keyframes to integrate scale [26] and proposed a double

window optimization [25]. Mei et al. [20] developed a rel-

ative SLAM approach for constant-time estimation. More

recently, ORB-SLAM [21, 22] introduced an efficient vi-

sual SLAM solution based on ORB features and innovations

such as map reuse. It has gained a lot of popularity due to

its high tracking accuracy and robustness and is among the

state-of-the-art methods for visual SLAM.

While the traditional structure and motion/visual SLAM

algorithms were based on heuristically selected keypoints,

more recently a number of so-called direct methods were

proposed [27, 23, 10, 12, 8]. These aim at computing geom-

etry and motion directly from the images thereby skipping

the intermediate keypoint selection step. Algorithmically

they typically rely on robust cost functions and optimiza-

tion through Gauss-Newton iteration as done also for RGB-

D based SLAM in [14, 15, 18]. While the methods [27, 23]

rely on variational methods and total variation regulariza-

tion to generate dense reconstructions in real-time (on pow-

erful GPUs), the latter works [10, 12] abstain from dense so-

lutions in order to not oversmooth or hallucinate geometric

structures but rather generate semi-dense or sparse recon-

structions without the need for GPU support. The extension

of direct monocular SLAM algorithms to large-scale envi-

ronments was proposed in LSD-SLAM [8, 9]. The key idea

is to incrementally track the camera and simultaneously per-

form a pose graph optimization in order to keep the en-

tire camera trajectory globally consistent. While this kind

of stripped-down version of bundle adjustment (which in-

cludes motion, but excludes structure) does not remove the

drift, it appears to spread it out across the computed trajec-

tory. Since then, the semi-dense direct VO/SLAM has been

further extended by support for omnidirectional cameras [1]

and tightly coupling with IMU [28]. A rolling shutter cali-

bration method for LSD-SLAM has been recently proposed

in [16].

While we are witnessing an ongoing competition be-

tween keypoint based algorithms and direct algorithms, re-

cently Direct Sparse Odometry (DSO) [7] was shown to

outperform the state-of-the-art keypoint based monocular

SLAM algorithm ORB-SLAM [21] in terms of both accu-

racy and robustness on a fairly large dataset for monocular

camera tracking [11].

While this seems to indicate a certain advantage of di-

rect methods, DSO has several shortcomings as a technique

for visual odometry or SLAM: Firstly, the mentioned per-

formance gain was demonstrated on a photometrically cali-

brated dataset. In the absense of this photometric calibration

(many datasets do not provide it), the performance of direct

methods like DSO substantially degrades. Secondly, being

a pure monocular system, DSO invariably cannot estimate

the scale of the reconstructed scene or the units of camera

motion. Furthermore, the estimated trajectory suffers from

substantial scale drift such that even manually providing the

best scale does not resolve the problem – see Fig 6. Thirdly,

as shown in [7] DSO is quite sensitive to geometric dis-

tortions as those induced by fast motion and rolling shutter

cameras. While techniques for calibrating rolling shutter

exist for direct SLAM algorithms [16], these are often quite

involved and far from real-time capable.

1.3. Contribution

In this work, we propose Stereo DSO as a novel direct

visual odometry method for highly accurate and robust mo-

tion and 3D structure estimation in real-time from a moving

stereo camera. It addresses the aforementioned shortcom-

ings of previous approaches by leveraging the additional

sensor information. Thus it provides an accurate and (due

to the stereo initialization) much faster converging scale es-

timation and is less sensitive to missing photometric cali-

bration or the effects of rolling shutter. In particular:

– We derive a stereo version of DSO. To this end, we

detail the proposed combination of temporal multi-

view stereo and static stereo and their integration with

marginalization using the Schur complement. Unlike

previous extension of monocular direct approach [8]

to stereo [9] (both apply filtering approaches to the ge-

ometry that do not involve bundle adjustment), we pro-

pose a novel way to extend the energy function and the

entire bundle adjustment procedure in a manner that

real-time capability is assured.

– We perform systematic quantitative evaluations on the

KITTI dataset and on the Cityscapes dataset. Compar-

isons to alternative methods like Stereo ORB-SLAM

and Stereo LSD-SLAM demonstrate that the proposed
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Stereo DSO is superior to these techniques, in particu-

lar when evaluated on the KITTI testing set, indicating

that the method generalizes better to unknown settings.

– A quantitative evaluation over longer ranges demon-

strates that the proposed Stereo DSO algorithm with-

out loop closure optimization outperforms Stereo

ORB-SLAM which applies global pose graph opti-

mization and bundle adjustment.

2. Direct Sparse VO with Stereo Cameras

Our Stereo DSO is a system that combines static stereo

with multi-view stereo. As is demonstrated in [9], such hy-

brid approach brings several advantages over each of the

separate one:

– Absolute scale can be directly calculated from static

stereo from the known baseline of the stereo camera.

– Static stereo can provide initial depth estimation for

multi-view stereo.

– Due to the fixed baseline, static stereo can only ac-

curately triangulate 3D points within a limited depth

range. This limit is resolved by temporal multi-view

stereo.

– They can complement each other in degenerate cases

where edges are parallel to epipolar lines.

An overview of our system is shown in Fig 2. Instead of

using random depth for initialization [10, 8, 7], our system

uses depth estimation from static stereo matching (Sec 2.3).

Based on the direct image alignment formulation (Sec 2.2),

new stereo frames are first tracked with respect to their ref-

erence keyframe in a coarse-to-fine manner (Sec 2.3). The

obtained pose estimate is used to refine the depth of recently

selected points. Then our system checks whether a new

keyframe is needed by the current active window. If not,

a non-keyframe will be created, otherwise a new keyframe

will be generated and added to the active window (Sec 2.4).

For all keyframes in the active window, a joint optimization

of their poses, affine brightness parameters, as well as the

depths of all the observed 3D points and camera intrinsics

is performed. To maintain the size of the active window,

old keyframes and 3D points are marginalized out using the

Schur complement (Sec 2.5).

2.1. Notation

Throughout this paper we use light, bold lower-case let-

ters and bold upper-case letters to denote scalars (u), vectors

(t) and matrices (R) respectively. Light upper-case letters

are used to represent functions (I).

Camera calibration matrices are denoted by K. Camera

poses are represented by matrices of the special Euclidean

group Ti ∈ SE(3), which transform a 3D coordinate from
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Figure 2. System overview.

the camera coordinate system to the world coordinate sys-

tem. ΠK and Π−1
K are used to denote camera projection

and back-projection functions. In this paper, a 3D point is

represented by its image coordinate p and inverse depth dp
relative to its host keyframe. The host keyframe is the frame

the point got selected from. The inverse depth parameteriza-

tion has been demonstrated to be advantageous when errors

in images are modeled as Gaussian distributions [5, 3].

2.2. Direct Image Alignment Formulation

Suppose a point set Pi in a reference frame Ii is observed

in another frame Ij , the basic idea of direct image alignment

can be formulated as

Eij =
∑

p∈Pi

ωp

∥∥∥Ij [p′]− Ii[p]
∥∥∥
γ
, (1)

where ‖ · ‖γ is the Huber norm and ωp is a weighting that

down-weights high image gradients

ωp =
c2

c2 + ‖∇Ii(p)‖22
, (2)

with some constant c. p′ is the projection of p in Ij calcu-

lated by

p′ = ΠK

(
TjiΠ

−1
K (p, dp)

)
, (3)

with dp the inverse depth of p and Tji the transformation

that transforms a point from frame i to frame j:

Tji :=

[
Rji t

0 1

]
= T−1

j Ti. (4)

Conventional direct methods, both dense and semi-

dense, tend to use as many pixels from each image as pos-

sible. While bringing heavy computational burden to the

system, its benefit saturates fast. Therefore, in [7] the au-

thors proposed a strategy to select a fixed number of points

from each frame, uniformly across all the regions with suf-

ficient gradient. For each selected point, a small neighbor-

hood around it is used to calculate the photometric error in
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(1). In this paper we follow the same approach, but use the

stereo image pair to verify the selected points and assist the

depth initialization. More details are provided in Sec 2.4.

As the photometric error is calculated directly on pixel

intensities, it is very sensitive to sudden illumination

changes between consecutive frames. Ideally the exposure

time of each frame, as well as the camera response func-

tion (which can be highly non-linear) are directly accessi-

ble from the hardware [11], which can be used to correct

such effect. When this information is not available (as for

most existing datasets), similar to [7], we introduce two pa-

rameters ai, bi for each image to model an affine brightness

change. The energy function in (1) is then modified to

Eij =
∑

p∈Pi

∑

p̃∈NP

ωp̃

∥∥∥∥Ij [p̃
′]−bj−

eaj

eai
(Ii[p̃]−bi)

∥∥∥∥
γ

, (5)

with NP the 8-point pattern of p as defined in [7] and p̃′

the projection of the pattern point p̃ into Ij . ai, aj , bi, bj
are estimated in the windowed optimization as is shown in

Sec 2.5.

2.3. Tracking

Each time a new stereo frame is fed into the system, di-

rect image alignement [10] is used to track it with respect

to the newest keyframe in the active window: a constant

motion model is used to assign an initial pose to the new

frame to be tracked. All the points inside the active win-

dow are projected into the new frame. Then the pose of the

new frame is optimized by minimizing the energy function

(5) while keeping the depth values fixed. The optimization

is performed with Gauss-Newton on an image pyramid in a

coarse-to-fine order.

To initialize the whole system, i.e., to track the sec-

ond frame with respect to the initial one using (5), the in-

verse depth values of the points in the first frame are re-

quired. Previous monocular direct VO approaches use ran-

dom depth values for initialization [10, 8, 7], thus usually

need a certain pattern of the initial camera movement. In

this work we use static stereo matching to estimate a semi-

dense depth map for the first frame. As at this stage the

affine brightness transfer factors between the stereo image

pair are unknown, correspondences are searched along the

horizontal epipolar line using the NCC of the 3 × 5 neigh-

borhood.

2.4. Frame Management

If a new stereo frame is successfully tracked, we use the

same criteria as in [7] to determine if a new keyframe is

required. The basic idea is to check if the scene or the illu-

mination has sufficiently changed. Scene changing is eval-

uated by the mean squared optical flow, as well as the mean

squared optical flow without rotation between the current

frame and the last keyframe in the active window. Illumi-

nation change is quantized by the relative brightness factor

|aj − ai|.

To create a new keyframe, a sparse set of points is se-

lected from the image, which will be called candidate points

in the rest of the paper. To select points evenly distributed

across the image and only points that have sufficient image

gradient, the image is divided into small blocks and for each

block an adaptive threshold is calculated. Instead of using

square blocks of fixed size [7], we use blocks with size that

is proportional to the image size. We find this helpful for

images with dissimilar width and height like the ones from

KITTI. A point is selected if it surpasses the threshold of the

block and it has the largest absolute gradient in its neighbor-

hood.

Before a candidate point is activated and optimized in

the windowed optimization, its inverse depth is constantly

refined by the following non-keyframes. In the monocu-

lar case, the candidate point is usually initialized to have

a depth range from 0 to infinity, corresponding to a large

depth variance. In our case, we use static stereo match-

ing with NCC to obtain a better depth initialization for the

candidate points, which significantly increases the tracking

accuracy.

When old points are removed from the active window

by marginalization (Sec 2.5), candidate points are activated

and added to the joint optimization. Each activated point

is hosted in one keyframe and is observed by several other

keyframes in the active window. Each time an active point

is observed in another keyframe, it creates a photometric

energy factor defined as the inner part of (5):

E
p
ij = ωp

∥∥∥∥Ij [p
′]− bj −

eaj

eai
(Ii[p]− bi)

∥∥∥∥
γ

. (6)

For simplicity of notation, we omit the summation over

the neighborhood NP in the above equation as well as in

the rest of this paper. A factor graph of the energy func-

tion is shown in Fig 3, where each factor (represented as

small square in the middle) depends on the inverse depth

of the point, the cameras poses of the host keyframe and

the keyframe that observes this point, as well as their affine

brightness correction factors. The constraints from static

stereo (denoted with red lines) introduce scale information

into the system. Moreover, they also provide good geomet-

ric priors to temporal multi-view stereo.

2.5. Windowed Optimization

Putting all the energy factors together, the final energy

function to be minimized in the windowed optimization is

E =
∑

i∈F

∑

p∈Pi

∑

j∈obs(p)

E
p
ij , (7)
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Figure 3. Factor graph of the energy function. In this example,

5 points are observed by 4 keyframes. Each energy factor is re-

lated to one point and two keyframes, thus depends on the inverse

depth of the point, the camera poses of the two keyframes and their

affine brightness correction factors, as well as the camera intrinsic

parameters (we assume the same for the left and the right cameras,

and omit it here for simplicity). Constraints from host keyframes

and static stereo are shown in dark blue and red respectively. Re-

maining constraints in light blue are the ones from the keyframes

the points are observed.

where F is the set of the keyframes in the current window

and obs(p) is the set of the keyframes in F that can observe

p. The energy is optimized iteratively using Gauss-Newton

algorithm:

δξ = −(JTWJ)−1JTWr, (8)

ξnew = δξ ⊞ ξ, (9)

where r contains the stacked residuals, J is the Jacobian and

W is the diagonal weight matrix. The parameters we want

to optimize are enclosed in

ξ = (T0,...,Nf−1, d0,...,Np−1, c,

aL0,...,Nf−1, b
L
0,...,Nf−1,

aR0,...,Nf−1, b
R
0,...,Nf−1),

(10)

where c is the vector containing the global camera intrin-

sics, L and R denote the parameter of the left and right cam-

era frame, and Nf and Np are the numbers of keyframes

and active points in the current window, respectively. The

⊞-operator on T is defined using Lie Algebra se(3) as

⊞ : se(3)× SE(3) → SE(3),x⊞T := exp(x̂)T, (11)

whereas on the rest parameters it is simply the conventional

addition.

Temporal Multi-View Stereo. Each residual from tempo-

ral multi-view stereo is defined as

rtk = Ij [p
′(Ti,Tj , d, c)]− bj −

eaj

eai
(Ii[p]− bi). (12)

Similar to [7] the Jacobian is defined as

Jt
k =

[
∂Ij

∂p′

∂p′(δξ ⊞ ξ)

∂δξtgeo
,
∂rk(δξ ⊞ ξ)

∂δξtphoto

]
, (13)

where the geometric parameters ξtgeo are (Ti,Tj , d, c) and

the photometric parameters ξtphoto=(ai, aj , bi, bj).

Static Stereo. For static stereo the residual is modified to

rsk = IRi [p′(Tji, d, c)]− bRi −
ea

R
i

ea
L
i

(Ii[p]− bLi ). (14)

The Jacobian has the same form as in (13) but now with less

geometric parameters ξgeo = (d, c), because the relative

transformation between the left and right cameras Tji is

fixed. Therefore, Tji is not optimized in the windowed

optimization.

Stereo Coupling. To balance the relative weights of tem-

poral multi-view and static stereo, we introduce a coupling

factor λ to weight the constraints from static stereo differ-

ently. The energy function in (7) thus can be further formu-

lated as

E =
∑

i∈F

∑

p∈Pi

( ∑

j∈obst(p)

E
p
ij + λE

p
is

)
, (15)

where obst(p) are the observations of p from temporal

multi-view stereo, and E
p
is the energy belonging to the

static stereo residuals. The effects of the coupling factor

are detailed in Sec 3.1.

Marginalization. To keep the active window of bounded

size, old keyframes are removed by marginalization us-

ing the Schur complement [19, 7]. Before marginalizing a

keyframe, we first marginalize all active points that are not

observed by the two latest keyframes together with all active

points hosted in the keyframe. Afterwards, the keyframe

is marginalized and moved out of the active window. Let

H = JTWJ and b = JTWr be the Gauss-Newton system

containing only the variables to marginalize and the vari-

ables connected to them in the factor graph. If we use α

and β to respectively denote the variables to keep and to

marginalize, the Gauss-Newton system can be rearranged

to [
Hαα Hαβ

Hβα Hββ

] [
xα

xβ

]
=

[
bα

bβ

]
. (16)

Multiplying the second line by HαβH
−1
ββ and subtracting it

from the first leads to

(Hαα −HαβH
−1
ββH

T
αβ)︸ ︷︷ ︸

Ĥαα

xα = bα −HαβH
−1
ββbβ︸ ︷︷ ︸

b̂α

. (17)

The resulting system Ĥααxα = b̂α only depends on the

variables to keep xα and is added as prior to the subsequent

optimizations.
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Figure 4. Average translational and rotational errors on Seq. 06 for

different coupling factors.

3. Evaluation

We evaluate our method on two popular datasets: the

KITTI Odometry Benchmark and the Cityscapes Dataset.

Both datasets provide synchronized stereo sequences with

rectified high resolution images. We compare our method

thoroughly with state-of-the-art stereo VO methods, both

feature-based and direct method on KITTI. On Cityscapes,

we create several sequences with ground truth camera poses

calculated from the provided GPS coordinates. We show

both the tracking and 3D reconstruction results on this

dataset and demonstrate that our method can be used for

large-scale camera tracking and 3D reconstruction.

3.1. KITTI Visual Odometry Benchmark

We evaluate our method on the KITTI Odometry Bench-

mark [13], where altogether 22 driving sequences are pro-

vided. The first 11 (00-10) sequences are provided with

ground truth 6D poses as training set, whereas the latter 11

sequences comprise the testing set.

We first test the influence of the stereo coupling factor on

an example sequence (Seq. 06). The translational and rota-

tional errors obtained by using different coupling factors are

shown in Fig 4: Introducing constraints from static stereo

with certain weightings (λ = 1, 2) significantly reduces

both translational and rotational errors. Further increasing

the weighting (λ > 3) makes the method more sensitive to

incorrect matchings from static stereo and thus degrade the

performance. The estimated trajectories for λ = 0 − 3 are

shown in the supplementary material.

The comparison of the VO accuracy of different stereo

methods on the training set are shown in Table 1. We com-

pare our method to Stereo LSD-SLAM and ORB-SLAM2,

which are currently the state-of-the-art direct and feature-

based stereo VO methods respectively. The results for

Stereo LSD-SLAM are cited from [9] (VO only), while the

ones for ORB-SLAM2 are obtained by running their code

with default settings. For fair comparison we turned off its

loop-closure detection and global bundle adjustment. It can

be seen that our results are almost always better than LSD-

SLAM. Compared to ORB-SLAM2, all our rotational er-

St. DSO ORB-SLAM2 St. LSD-VO

Seq. trel rrel trel rrel trel rrel

00 0.84 0.26 0.83 0.29 1.09 0.42

01 1.43 0.09 1.38 0.20 2.13 0.37

02 0.78 0.21 0.81 0.28 1.09 0.37

03 0.92 0.16 0.71 0.17 1.16 0.32

04 0.65 0.15 0.45 0.18 0.42 0.34

05 0.68 0.19 0.64 0.26 0.90 0.34

06 0.67 0.20 0.82 0.25 1.28 0.43

07 0.83 0.36 0.78 0.42 1.25 0.79

08 0.98 0.25 1.07 0.31 1.24 0.38

09 0.98 0.18 0.82 0.25 1.22 0.28

10 0.49 0.18 0.58 0.28 0.75 0.34

mean 0.84 0.20 0.81 0.26 1.14 0.40

Table 1. Comparison of accuracy on KITTI training set. trel trans-

lational RMSE (%), rrel rotational RMSE (degree per 100m).

Both are average over 100m to 800m intervals. Best results are

shown as bold numbers.

rors are better, but translational errors are slightly mixed.

We claim that this might result from the relatively low frame

rate of the dataset.

In Fig 5 we show our results on the testing set. We show

the same plots as recommended by the benchmark, where

translational errors and rotational errors with respect to dif-

ferent distance intervals and driving speeds over the entire

set are plotted. It is worth noting that the results for the other

two methods are obtained by their SLAM system with loop

closure (for ORB-SLAM2 also with global bundle adjust-

ment), while ours are from pure VO. As can be seen from

the plots, our method performs the best under all settings.

To show the benefit of using a stereo camera, Fig 6

qualitatively compares the results of different monocular

VO methods with our method on the sequences 00 and

06. Both state-of-the-art feature-based and direct monoc-

ular VO methods can not handle the scale drift properly.

Results on all training sequences can be found in the sup-

plementary material.

3.2. Cityscapes Dataset

To evaluate our method on more realistic data, we fur-

ther run our Stereo DSO on the Cityscapes Dataset [4]. Al-

though this dataset is dedicatedly designed for scene under-

standing and image segmentation, it also provides a long

sequence (over 100,000 frames) captured using a stereo

camera system. We choose this dataset as it provides in-

dustrial level images with high dynamic-range (HDR) and

fairly high frame rate (17Hz). Moreover, in contrast to most

existing datasets that provide street view sequences with

global shutters, the images of Cityscapes were captured us-

ing rolling shutter cameras, which has been considered as a

main challenge to direct methods. Although we do not ad-

dress the rolling shutter calibration problem specifically in
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Figure 5. Average translational and rotational errors with respect

to driving intervals (top two) and driving speed (bottom two) on

KITTI testing set (Seq. 11-21). In all the cases, our VO results

(without loop closure) are better than the SLAM results (with loop

closure, for ORB-SLAM2 also with global bundle adjustment) of

LSD-SLAM and ORB-SLAM2. It is surprising to see that even for

large intervals our method performs better, as in such cases loop

closure usually reduces the errors significantly.

this paper, our method implicitly makes use of two advan-

tages of modern stereo camera systems: Firstly, they have

very fast pixel clock which reduces the rolling shutter ef-

fect; Secondly, the corresponding rows of the left and right

images are synchronized. Therefore, static stereo can com-

pensate the errors introduced by the rolling shutter effect

across multiple views (multi-view stereo).

As for this dataset only inaccurate GPS/vehicle odome-

try information is provided, it is hard to evaluate the VO per-

-400 -200 0 200

-100

0

100

200

300

400

GT

Mono ORB

Mono DSO

-200 0 200

0

100

200

300

400 GT

Stereo DSO

-200 0 200

0

100

200

300

400

500

GT

Mono ORB

Mono DSO

-200 -100 0 100 200

0

100

200

300 GT

Stereo DSO

Figure 6. Qualitative results on KITTI sequences 00 (top) and 05

(bottom). For the monocular VO results we perform a similarity

alignment to the ground truth.

Figure 7. An example of severe brightness change due to cam-

era auto exposure/gain control. Despite the affine brightness cor-

rection our method still fails here due to the extreme brightness

change as well as the strong rotational motion of the car.

formance accurately. Besides, this dataset has lots of mov-

ing objects such as cars driving right in front of the camera

as well as severe uncalibrated brightness changes (Fig 7).

Although our method has considered brightness changes in

the energy function, it seems the simple affine brightness

modeling is not sufficient to handle extreme cases. Our

method fails in the scene as shown in Fig 7, where the se-

vere brightness change is combined with a strong rotational

movement of the car.

To evaluate our tracking accuracy, we divide the long

sequence into several smaller ones with length of 3000 to

6000 frames. For each small sequence, we calculate the
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Figure 8. Examples of qualitative results on the Cityscapes Dataset.

ground truth camera poses from the GPS coordinates using

the Mercator projection and align these poses to our trajec-

tories using a SE(3) transformation. Some results of the es-

timated camera trajectories can be found in Fig 9. As a big

advantage of our method over the feature-based methods,

our VO approach creates precise and much denser 3D re-

constructions. Fig 8 shows some reconstruction results on

the Frankfurt sequence. Although the reconstructions are

sparser than the ones from previous dense or semi-dense

approaches, they are much more accurate due to the bundle

adjustment in the windowed optimization. More evaluation

results can be found in the supplementary material.

4. Conclusion

In this work, we introduced Stereo Direct Sparse Odom-

etry as a direct large-scale capable method for accurately

tracking and mapping from a stereo camera in real-time.

We detailed the technical implementation including the in-

tegration of temporal multi-view stereo and static stereo

within a marginalization framework using the Schur com-

plement. Thorough qualitative and quantitative evaluations

on the KITTI dataset and the Cityscapes dataset demon-

strate that Stereo DSO is the currently most accurate and

robust method for tracking a stereo camera in challeng-

ing real-world scenarios. In particular, an evaluation on

the KITTI testing set showed that even without closing

large loops, Stereo DSO provides more accurate results than

Stereo ORB-SLAM2 with loop closuring and global bundle

adjustment.
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Figure 9. Estimated trajectories on the Cityscapes Frankfurt stereo

sequence. The sequences are obtained by dividing the long se-

quence into several smaller segments of 5000 to 6000 frames.

In future work, we plan to extend our approach to a full

SLAM system by adding loop closuring and a database

for map maintenance. Besides, we also consider explicit

dynamic object handling to further boost the VO accuracy

and robustness.
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