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Abstract

We address the problem of distance metric learning

(DML), defined as learning a distance consistent with a no-

tion of semantic similarity. Traditionally, for this problem

supervision is expressed in the form of sets of points that fol-

low an ordinal relationship – an anchor point x is similar to

a set of positive points Y , and dissimilar to a set of negative

points Z, and a loss defined over these distances is mini-

mized. While the specifics of the optimization differ, in this

work we collectively call this type of supervision Triplets

and all methods that follow this pattern Triplet-Based meth-

ods. These methods are challenging to optimize. A main

issue is the need for finding informative triplets, which is

usually achieved by a variety of tricks such as increasing

the batch size, hard or semi-hard triplet mining, etc. Even

with these tricks, the convergence rate of such methods is

slow. In this paper we propose to optimize the triplet loss

on a different space of triplets, consisting of an anchor data

point and similar and dissimilar proxy points which are

learned as well. These proxies approximate the original

data points, so that a triplet loss over the proxies is a tight

upper bound of the original loss. This proxy-based loss is

empirically better behaved. As a result, the proxy-loss im-

proves on state-of-art results for three standard zero-shot

learning datasets, by up to 15% points, while converging

three times as fast as other triplet-based losses.

1. Introduction

Distance metric learning (DML) is a major tool for a va-

riety of problems in computer vision. It has successfully

been employed for image retrieval [14], near duplicate de-

tection [19], clustering [4] and zero-shot learning [8].

A wide variety of formulations have been proposed. Tra-

ditionally, these formulations encode a notion of similar and

dissimilar data points. For example, contrastive loss [2, 3],

which is defined for a pair of either similar or dissimilar data

points. Another commonly used family of losses is triplet

loss, which is defined by a triplet of data points: an anchor

point, and a similar and dissimilar data points. The goal in
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Figure 1: Recall@1 as a function of training step on the

Cars196 dataset. Proxy-NCA converges about three times

as fast compared with the baseline methods, and results in

higher Recall@1 values.

a triplet loss is to learn a distance in which the anchor point

is closer to the similar point than to the dissimilar one.

The above losses, which depend on pairs or triplets of

data points, empirically suffer from sampling issues – se-

lecting informative pairs or triplets is crucial for success-

fully optimizing them and improving convergence rates. In

this work we address this aspect and propose to re-define

triplet based losses over a different space of points, which

we call proxies. This space approximates the training set of

data points (for each data point in the original space there

is a proxy point close to it), additionally, it is small enough

so that we do not need to sample triplets but can explic-

itly write the loss over all (or most) of the triplets involving

proxies. As a result, this re-defined loss is easier to opti-

mize, and it trains faster (See Figure 1). Note that the prox-

ies are learned as part of the model parameters.

In addition, we show that the proxy-based loss is an up-

per bound to triplet loss and that, empirically, the bound

tightness improves as training converges, which justifies the

use of proxy-based loss to optimize the original loss.

Further, we demonstrate that the resulting distance met-

ric learning problem has several desirable properties. First
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and foremost, the obtained metric performs well in the zero-

shot scenario, improving state of the art, as demonstrated

on three widely used datasets for this problem (CUB200,

Cars196 and Stanford Products). Second, the learning prob-

lem formulated over proxies exhibits empirically faster con-

vergence than other metric learning approaches.

2. Related Work

There is a large body of work on metric learning, here

we focus on its use in computer vision using deep methods.

An early use of deep methods for metric learning was

the introduction of Siamese networks with a contrastive

loss [2, 3]. Pairs of data points were fed into a network,

and the difference between the embeddings produced was

used to pull together points from the same class, and push

away from each other points from different classes. A short-

coming of this approach is that it can not take directly into

account relative distances between classes. Since then, most

methods use a notion of triplets to provide supervision.

In [18] a large margin, nearest neighbor approach is de-

signed to enable k-NN classification. It strives to ensure

for each image x a predefined set of images from the same

class as neighbors that are closer to x than images from

other classes with a high separation margin. The set of tar-

get neighbors is defined using l2 metric on the input space.

The loss function is defined over triplets of points which

are sampled during training. This sampling becomes pro-

hibiting when the number of classes and training instances

becomes large, see Sec 3.2 for more details.

To address some of the issues in this and similar

work [13] a Semi-Hard negative mining approach was in-

troduced in [12]. In this approach, hard triplets were formed

by sampling positive/negative instances within a mini-batch

with the goal of finding negative examples that are within

the margin, but are not too confusing, as those might come

from labeling errors in the data. This improved training

stability but required large mini-batches - 1800 images in

the case of [12], and training was still slow. Large batches

also require non trivial engineering work, e.g. synchronized

training with multiple GPUs.

This idea, of incorporating information beyond a single

triplet has influenced many approaches. Song et. al. [8]

proposed Lifted Structured Embedding, where each posi-

tive pair compares the distances against all negative pairs

in the batch weighted by the margin violation. This pro-

vided a smooth loss which incorporates the negative mining

functionality. In [14], the N-Pair Loss was proposed, which

used Softmax cross-entropy loss on pairwise similarity val-

ues within the batch. Inner product is used as a similarity

measure between images. The similarity between examples

from the same class is encouraged to be higher than the sim-

ilarity with other images in the batch. A cluster ranking loss

was proposed in [15]. The network first computed the em-

bedding vectors for all images in the batch and ranked a

clustering score for the ground truth clustering assignment

higher than the clustering score for any other batch assign-

ment with a margin.

Magnet Loss [9] was designed to compare distributions

of classes instead of instances. Each class was represented

by a set of K cluster centers, constructed by k-means. In

each training iteration, a cluster was sampled, and the M

nearest impostor clusters (clusters from different classes)

retrieved. From each imposter cluster a set of images were

then selected and NCA [10] loss used to compare the exam-

ples. Note that, in order to update the cluster assignments,

training was paused periodical, and K-Means reapplied.

Our proxy-based approach compares full sets of exam-

ples, but both the embeddings and the proxies are trained

end-to-end (indeed the proxies are part of the network ar-

chitecture), without requiring interruption of training to re-

compute the cluster centers, or class indices.

3. Metric Learning using Proxies

3.1. Problem Formulation

We address the problem of learning a distance d(x, y; θ)
between two data points x and y. For example, it can

be defined as Euclidean distance between embeddings of

data obtained via a deep neural net e(x; θ): d(x, y; θ) =
||e(x; θ)− e(y; θ)||22, where θ are the parameters of the net-

work. To simplify the notation, in the following we drop the

full θ notation, and use x and e(x; θ) interchangeably.

Often times such distances are learned using similar-

ity style supervision, e. g. triplets of similar and dissimilar

points (or groups of points) D = {(x, y, z)}, where in each

triplet there is an anchor point x, and the second point y
(the positive) is more similar to x than the third point z (the

negative). Note that both y and, more commonly, z can be

sets of positive/negative points. We use the notation Y , and

Z whenever sets of points are used.

The DML task is to learn a distance respecting the simi-

larity relationships encoded in D:

d(x, y; θ) ≤ d(x, z; θ) for all (x, y, z) ∈ D (1)

An ideal loss, precisely encoding Eq. (1), reads:

LRanking(x, y, z) = H(d(x, y)− d(x, z)) (2)

where H is the Heaviside step function. Unfortunately, this

loss is not amenable directly to optimization using stochas-

tic gradient descent as its gradient is zero everywhere. As a

result, one resorts to surrogate losses such as Neighborhood

Component Analysis (NCA) [10] or margin-based triplet

loss [18, 12]. For example, Triplet Loss uses a hinge func-

tion to create a fixed margin between the anchor-positive

difference, and the anchor-negative difference:

Ltriplet(x, y, z) = [d(x, y) +M − d(x, z)]+ (3)
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Where M is the margin, and [·]+ is the hinge function.

Similarly, the NCA loss [10] tries to make x closer to y
than to any element in a set Z using exponential weighting:

LNCA(x, y, Z) = − log

(

exp(−d(x, y))
∑

z∈Z exp(−d(x, z))

)

(4)

3.2. Sampling and Convergence

Neural networks are trained using a form of stochastic

gradient descent, where at each optimization step a stochas-

tic loss is formulated by sampling a subset of the train-

ing set D, called a batch. The size of a batch b is small,

e.g. in many modern computer vision network architectures

b = 32. While for classification or regression the loss de-

pends on a single data point from D, the above distance

learning losses depend on at least three data points, i.e. total

number of possible samples could be in O(n3) for |D| = n.

To see this, consider that a common source of triplet su-

pervision is from a classification-style labeled dataset: a

triplet (x, y, z) is selected such that x and y have the same

label while x and z do not. For illustration, consider a case

where points are distributed evenly between k classes. The

number of all possible triplets is then kn/k ·((n/k)−1)(k−
1) · n/k = n2(n− k)(k − 1)/k2 = O(n3).

As a result, in metric learning each batch samples a very

small subset of all possible triplets, i.e., in the order of

O(b3). Thus, in order to see all triplets in the training one

would have to go over O((n/b)3) steps, while in the case

of classification or regression the needed number of steps

is O(n/b). Note that n is in the order of hundreds of thou-

sands, while b is between a few tens to about a hundred,

which leads to n/b being in the tens of thousands.

Empirically, the convergence rate of the optimization

procedure is highly dependent on being able to see use-

ful triplets, e.g., triplets which give a large loss value as

motivated by [12]. The authors propose to sample triplets

within the data points present in the current batch, this how-

ever, does not address the problem of sampling from the

whole set of triplets D. This is particularly challenging as

the number of triplets is so overwhelmingly large.

3.3. Proxy Ranking Loss

To address the above sampling problem, we propose to

learn a small set of data points P with |P | ≪ |D|. Intu-

itively we would like to have P approximate the set of all

data points, i.e. for each x there is one element in P which

is close to x w.r.t. the distance metric d. We call such an

element a proxy for x:

p(x) = argmin
p∈P

d(x, p) (5)

and denote the proxy approximation error by the worst ap-

proximation among all data points

ǫ = max
x

d(x, p(x)) (6)

Figure 2: Illustrative example of the power of proxies. [Left

panel] There are 48 triplets that can be formed from the in-

stances (small circles/stars). [Right panel] Proxies (large

circle/star) serve as a concise representation for each se-

mantic concept, one that fits in memory. By forming triplets

using proxies, only 8 comparisons are needed.

We propose to use these proxies to express the ranking

loss, and because the proxy set is smaller than the original

training data, the number of triplets would be significantly

reduced (see Figure 2). Additionally, since the proxies rep-

resent our original data, the reformulation of the loss would

implicitly encourage the desired distance relationship in the

original training data.

To see this, consider a triplet (x, y, z) for which we are

to enforce Eq. (1). By triangle inequality,

|{d(x, y)− d(x, z)} − {d(x, p(y))− d(x, p(z))}| ≤ 2ǫ

As long as |d(x, p(y)) − d(x, p(z))| > 2ǫ, the ordinal re-

lationship between the distance d(x, y) and d(x, z) is not

changed when y, z are replaced by the proxies p(y), p(z).
Thus, we can bound the expectation of the ranking loss over

the training data:

E[LRanking(x; y, z)] ≤
E[LRanking(x; p(y), p(z))] +

Pr[|d(x, p(y)− d(x, p(z)| ≤ 2ǫ]

Under the assumption that all the proxies have norm

‖p‖ = Np and all embeddings have the same norm ‖x‖ =
Nx, the bound can be tightened. Note that in this case we

have, for any α > 0:

LRanking(x, y, z)

= H(‖αx− p(y)‖ − ‖αx− p(z)‖)
= H(‖αx− p(y)‖2 − ‖αx− p(z)‖2)
= H(2α(xT p(z)− xT p(y))) = H(xT p(z)− xT p(y)).

I.e. the ranking loss is scale invariant in x. However, such

re-scaling affects the distances between the embeddings and

proxies. We can judiciously choose α to obtain a better

bound. A good value would be one that makes the embed-

dings and proxies lie on the same sphere, i.e. α = Np/Nx.

These assumptions prove easy to satisfy, see Section 4.
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The ranking loss is difficult to optimize, particularly with

gradient based methods. We argue that many losses, such as

NCA loss [10], Hinge triplet loss [18], N-pairs loss [14], etc

are merely surrogates for the ranking loss. In this next sec-

tion, we show how the proxy approximation can be used to

bound the popular NCA loss for distance metric learning.

4. Training

In this section we explain how to use the introduced

proxies to train a distance based on the NCA formulation.

We would like to minimize the total loss, defined as a sum

over triplets (x, y, Z) (see Eq. (1)). Instead, we minimize

the upper bound, defined as a sum over triplets over an an-

chor and two proxies (x, p(y), p(Z)) (see Eq. (7)).

Algorithm 1 Proxy-NCA Training.

Randomly init all values in θ including proxy vectors.

for i = 1 . . . T do

Sample triplet (x, y, Z) from D
Formulate proxy triplet (x, p(y), p(Z))

l = − log
(

exp(−d(x,p(y)))∑
p(z)∈p(Z) exp(−d(x,p(z)))

)

θ ← θ − λ∂θl
end for

We perform this optimization by gradient descent, as

outlined in Algorithm 1. At each step, we sample a triplet

of a data point and two proxies (x, p(y), p(z)), which is

defined by a triplet (x, y, z) in the original training data.

However, each triplet defined over proxies upper bounds

all triplets (x, y′, z′) whose positive y′ and negative z′ data

points have the same proxies as y and z respectively. This

provides convergence speed-up. The proxies can all be held

in memory, and sampling from them is simple. In practice,

when an anchor point is encountered in the batch, one can

use its positive proxy as y, and all negative proxies as Z to

formulate triplets that cover all points in the data. We back

propagate through both points and proxies, and do not need

to pause training to re-calculate the proxies at any time.

We train our model with the property that all proxies

have the same norm NP and all embeddings have the norm

NX . Empirically such a model performs at least as well as

without this constraint, and it makes applicable the tighter

bounds discussed in Section 3.3. While in the future we

will incorporate the equal norm property into the model dur-

ing training, for the experiments here we simply trained a

model with the desired loss, and re-scaled all proxies and

embeddings to the unit sphere (note that the transformed

proxies are only useful for analyzing the effectiveness of

the bounds, and are not used during inference).

4.1. Proxy Assignment and Triplet Selection

In the above algorithm we need to assign the proxies for

the positive and negative data points. We experiment with

two assignment procedures.

When triplets are defined by the semantic labels of data

points (the positive data point has the same semantic label

as the anchor; the negative a different label), then we can as-

sociate a proxy with each semantic label: P = {p1 . . . pL}.
Let c(x) be the label of x. We assign to a data point the

proxy corresponding to its label: p(x) = pc(x). We call this

static proxy assignment as it is defined by the semantic label

and does not change during the execution of the algorithm.

Critically, in this case, we no longer need to sample triplets

at all. Instead one just needs to sample an anchor point x,

and use the anchor’s proxy as the positive, and the rest as

negatives LNCA(x, p(x), p(Z); θ)
In the more general case, however, we might not have

semantic labels. Thus, we assign to a point x the closest

proxy, as defined in Eq. (5). We call this dynamic proxy

assignment and note that is aligned with the original defini-

tion of the term proxy. See Section 6 for evaluation with

the two proxy assignment methods.

4.2. Proxy-based Loss Bound

In addition to the motivation for proxies in Sec. 3.3, we

also show in the following that the proxy based surrogate

losses upper bound versions of the same losses defined over

the original training data. In this way, the optimization of a

single triplet of a data point and two proxies bounds a large

number of triplets of the original loss.

More precisely, if a surrogate loss L over triplet (x, y, z)
can be bounded by proxy triplet

L(x, y, z) ≤ αL(x, p(y), p(z)) + δ

for constant α and δ, then the following bound holds for the

total loss:

L(D) ≤ α

|D|
∑

x;py,pz∈P

nx,py,pz
L(x, p(y), p(z)) + δ (7)

where nx,py,pz
= |{(x, y, z) ∈ D|p(y) = py, p(z) = pz}|

denotes the number of triplets in the training data with an-

chor x and proxies py and pz for the positive and negative

data points.

The quality of the above bound depends on δ, which de-

pends on the loss and as we will see also on the proxy ap-

proximation error ǫ. We will show for concrete loss that the

bound gets tighter for small proxy approximation error.

The proxy approximation error depends to a degree on

the number of proxies |P |. In the extreme case, the number

of proxies is equal to the number of data points, and the ap-

proximation error is zero. Naturally, the smaller the number

of proxies the higher the approximation error. However, the
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number of terms in the bound is in O(n|P |2). If |P | ≅ n
then the number of samples needed will again be O(n3).
We would like to keep the number of terms as small as pos-

sible, as motivated in the previous section, while keeping

the approximation error small as well. Thus, we seek a bal-

ance between small approximation error and small number

of terms in the loss. In our experiments, the number of prox-

ies varies from a few hundreds to a few thousands, while the

number of data points is in the tens/hundreds of thousands.

Proxy loss bounds For the following we assume that the

norms of proxies and data points are constant |px| = Np and

|x| = Nx, we will denote α = 1
NpNx

. Then the following

bounds of the original losses by their proxy versions are:

Proposition 4.1. The NCA loss (see Eq. (4)) is proxy

bounded:

L̂NCA(x, y, Z) ≤ αLNCA(x, py, pZ)+(1−α) log(|Z|)+2
√
2ǫ

where L̂NCA is defined as LNCA with normalized data points

and |Z| is the number of negative points used in the triplet.

Proposition 4.2. The margin triplet loss (see Eq. (3)) is

proxy bounded:

L̂triplet(x, y, z) ≤ αLtriplet(x, py, pz) + (1− α)M + 2
√
ǫ

where L̂triplet is defined as Ltriplet with normalized data

points.

See Appendix for proofs.

5. Implementation Details

We used the TensorFlow Deep Learning framework [1]

for all methods described below. For fair comparison1

we follow the implementation details of [15]. We use the

Inception [16] architecture with batch normalization [5].

All methods are first pretrained on ILSVRC 2012-CLS

data [11], and then finetuned on the tested datasets. The

size of the learned embeddings is set to 64. The inputs are

resized to 256 × 256 pixels, and then randomly cropped to

227 × 227. The numbers reported in [14] are using multi-

ple random crops during test time, but for fair comparison

with the other methods, and following the procedure in [15],

our implementation uses only a center crop during test time.

We use the RMSprop optimizer with the margin multiplier

constant γ decayed at a rate of 0.94. The only difference

we take from the setup described in [15] is that for our pro-

posed method, we use a batch size m of 32 images (all other

methods use m = 128). We do this to illustrate one of the

benefits of the proposed method - it does not require large

1We thank the authors of [15] for providing their code for the baseline

methods, in which we based our model, and for helpful discussions.

batches. We have experimentally confirmed that the results

are stable when we use larger batch sizes for our method.

Most of our experiments are done with a Proxy-NCA

loss. However, proxies can be introduced in many popu-

lar metric learning algorithms, as outlined in Section 3. To

illustrate this point, we also report results of using a Proxy-

Triplet approach on one of the datasets, see Section 6 below.

6. Evaluation

Based on the experimental protocol detailed in [15, 14]

we evaluate retrieval at k and clustering quality on data

from unseen classes on 3 datasets: CUB200-2011 [17],

Cars196 [6], and Stanford Online Products [8]. Clustering

quality is evaluated using the Normalized Mutual Informa-

tion measure (NMI). NMI is defined as the ratio of the mu-

tual information of the clustering and ground truth, and their

harmonic mean. Let Ω = {ω1, ω2, . . . , ωk} be the cluster

assignments that are, for example, the result of K-Means

clustering. That is, ωi contains the instances assigned to the

i’th cluster. Let C = {c1, c2, . . . , cm} be the ground truth

classes, where cj contains the instances from class j.

NMI(Ω,C) = 2
I(Ω,C)

H(Ω) +H(C)
. (8)

Note that NMI is invariant to label permutation which is a

desirable property for for our evaluation. For more infor-

mation on clustering quality measurement see [7].

We compare our Proxy-based method with 4 state-of-

the-art deep metric learning approaches: Triplet Learning

with semi-hard negative mining [12], Lifted Structured Em-

bedding [8], the N-Pairs deep metric loss [14], and Learn-

able Structured Clustering [15]. In all our experiments we

use the same data splits as [15].

6.1. Cars196

The Cars196 dataset [6] is a fine-grained car cate-

gory dataset containing 16,185 images of 196 car models.

Classes are at the level of make-model-year, for example,

Mazda-3-2011. In our experiments we split the dataset such

that 50% of the classes are used for training, and 50% are

used for evaluation. Table 1 shows recall-at-k and NMI

scores for all methods on the Cars196 dataset. Proxy-NCA

has a 15 percentage points (26% relative) improvement in

recall@1 from previous state-of-the-art, and a 6% point

gain in NMI. Figure 3 shows example retrieval results on

the test set of the Cars196 dataset.

6.2. Stanford Online Products dataset

The Stanford product dataset contains 120,053 images of

22,634 products downloaded from eBay.com. For training,

59,5511 out of 11,318 classes are used, and 11,316 classes

(60,502 images) are held out for testing. This dataset is
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Figure 3: Retrieval results on a set of images from the

Cars196 dataset using our proposed proxy-based training

method. Left column contains query images. The results

are ranked by distance.

R@1 R@2 R@4 R@8 NMI

Triplet Semihard [12] 51.54 63.78 73.52 81.41 53.35

Lifted Struct [8] 52.98 66.70 76.01 84.27 56.88

Npairs [14] 53.90 66.76 77.75 86.35 57.79

Proxy-Triplet 55.90 67.99 74.04 77.95 54.44

Struct Clust [15] 58.11 70.64 80.27 87.81 59.04

Proxy-NCA 73.22 82.42 86.36 88.68 64.90

Table 1: Retrieval and Clustering Performance on the

Cars196 dataset. Bold indicates best results.

more challenging as each product has only about 5 images,

and at first seems well suited for tuple-sampling approaches,

and less so for our proxy formulation. Note that holding

in memory 11,318 float proxies of dimension 64 takes less

than 3Mb. Figure 4 shows recall-at-1 results on this dataset.

Proxy-NCA has over a 6% gap from previous state of the

art. Proxy-NCA compares favorably on clustering as well,

with a score of 90.6. This, compared with the top method,

described in [15] which has an NMI score of 89.48. The

difference is statistically significant.

Figure 5 shows example retrieval results on images from

the Stanford Product dataset. Interestingly, the embeddings

show a high degree of rotation invariance.

6.3. CUB200

The Caltech-UCSD Birds-200-2011 dataset contains

11,788 images of birds from 200 classes of fine-grained bird

species. We use the first 100 classes as training data for the

metric learning methods, and the remaining 100 classes for

Triplet
Semihard

Lifted
Struct

Npairs Struct
Clust

Proxy
NCA

50

55

60

65

70

75

R
@
1

66.67

62.46

66.41 67.02

73.73

Figure 4: Recall@1 results on the Stanford Product Dataset.

Proxy-NCA has a 6% point gap with previous SOTA.

Figure 5: Retrieval results on a randomly selected set of

images from the Stanford Product dataset. Left column

contains query images. The results are ranked by distance.

Note the rotation invariance exhibited by the embedding.

evaluation. Table 2 compares the proxy-NCA with the base-

line methods. Birds are notoriously hard to classify, as the

inner-class variation is quite large when compared to the

initra-class variation. This is apparent when observing the

results in the table. All methods perform less well than in

the other datasets. Proxy-NCA improves on SOTA for re-

call at 1-2 and on the clustering metric.

6.4. Convergence Rate

The tuple sampling problem that affects most metric

learning methods makes them slow to train. By keeping

all proxies in memory we eliminate the need for sampling

tuples, and mining for hard negative to form tuples. Fur-

thermore, the proxies act as a memory that persists between
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R@1 R@2 R@4 R@8 NMI

Triplet Semihard [12] 42.59 55.03 66.44 77.23 55.38

Lifted Struct [8] 43.57 56.55 68.59 79.63 56.50

Npairs [14] 45.37 58.41 69.51 79.49 57.24

Struct Clust [15] 48.18 61.44 71.83 81.92 59.23

Proxy NCA 49.21 61.90 67.90 72.40 59.53

Table 2: Retrieval and Clustering Performance on the

CUB200 dataset.
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Figure 6: Recall@1 results as a function of ratio of proxies

to semantic labels. When allowed 0.5 proxies per label or

more, Proxy-NCA compares favorably with previous state

of the art.

batches. This greatly speeds up learning. Figure 1 compares

the training speed of all methods on the Cars196 dataset.

Proxy-NCA trains much faster than other metric learning

methods, and converges about three times as fast.

6.5. Fractional Proxy Assignment

Metric learning requires learning from a large set of se-

mantic labels at times. Section 6.2 shows an example of

such a large label set. Even though Proxy-NCA works well

in that instance, and the memory footprint of the proxies is

small, here we examine the case where one’s computational

budget does not allow a one-to-one assignment of proxies

to semantic labels. Figure 6 shows the results of an experi-

ment in which we vary the ratio of labels to proxies on the

Cars196 dataset. We modify our static proxy assignment

method to randomly pre-assign semantic labels to proxies.

If the number of proxies is smaller than the number of la-

bels, multiple labels are assigned to the same proxy. So in

effect each semantic label has influence on a fraction of a

proxy. Note that when proxy-per-class ≥ 0.5 Proxy-NCA

has better performance than previous methods.
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R
e
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65.88 66.17
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Figure 7: Recall@1 results for dynamic assignment on the

Cars196 dataset as a function of proxy-to-semantic-label ra-

tio. More proxies allow for better fitting of the underlying

data, but one needs to be careful to avoid over-fitting.

6.6. Dynamic Proxy Assignment

In many cases, the assignment of triplets, i.e. selection

of a positive, and negative example to use with the anchor

instance, is based on the use of a semantic concept – two

images of a dog need to be more similar than an image of

a dog and an image of a cat. These cases are easily han-

dled by our static proxy assignment, which was covered in

the experiments above. In some cases however, there are

no semantic concepts to be used, and a dynamic proxy as-

signment is needed. In this section we show results using

this assignment scheme. Figure 7 shows recall scores for

the Cars196 dataset using the dynamic assignment. The op-

timization becomes harder to solve, specifically due to the

non-differentiable argmin term in Eq.(5). However, it is in-

teresting to note that first, a budget of 0.5 proxies per se-

mantic concept is again enough to improve on state of the

art, and one does see some benefit of expanding the proxy

budget beyond the number of semantic concepts.

7. Discussion

In this paper we have demonstrated the effectiveness of

using proxies for the task of deep metric learning. Us-

ing proxies, which are saved in memory and trained us-

ing back-prop, training time is reduced, and the resulting

models achieve a new state of the art. We have presented

two proxy assignment schemes – a static one, which can be

used when semantic label information is available, and a dy-

namic one which is used when the only supervision comes

in the form of similar and dissimilar triplets. Furthermore,

we show that a loss defined using proxies, upper bounds the

original, instance-based loss. If the proxies and instances

have constant norms, we show that a well optimized proxy-

based model does not change the ordinal relationship be-

tween pairs of instances.

366



Our formulation of Proxy-NCA loss produces a loss very

similar to the standard cross-entropy loss used in classifica-

tion. However, we arrive at our formulation from a different

direction: we are not interested in the actual classifier and

indeed discard the proxies once the model has been trained.

Instead, the proxies are auxiliary variables, enabling more

effective optimization of the embedding model parameters.

As such, our formulation not only enables us to surpass the

state of the art in zero-shot learning, but also offers an expla-

nation to the effectiveness of the standard trick of training

a classifier, and using its penultimate layer’s output as the

embedding.
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Appendix

Proof of Proposition 4.1: In the following for a vector x
we will denote its unit norm vector by x̂ = x/|x|.

First, we can upper bound the dot product of a unit nor-

malized data points x̂ and ŷ by the dot product of unit nor-

malized point x̂ and proxy p̂y using the Cauchy inequality

as follows:

x̂T (ẑ − p̂z) ≤ |x̂||ẑ − p̂z| ≤
√
ǫ (9)

Hence:

x̂T ẑ ≤ x̂T p̂z +
√
ǫ (10)

Similarly, one can obtain an upper bound for the negative

dot product:

− x̂T ŷ ≤ −x̂T p̂y +
√
ǫ (11)

Using the above two bounds we can upper bound the origi-

nal NCA loss LNCA(x̂, ŷ, Z):

= − log

(

exp(−1/2|x̂− ŷ|2)
∑

z∈Z exp(−1/2|x̂− ẑ|2)

)

= − log

(

exp(−1 + x̂T ŷ)
∑

z∈Z exp(−1 + x̂T ẑ)

)

= − log

(

exp(x̂T ŷ)
∑

z∈Z exp(x̂T ẑ)

)

= −x̂T ŷ + log(
∑

z∈Z

exp(x̂T ẑ)) (12)

≤ −x̂T p̂y +
√
ǫ+ log(

∑

z∈Z

exp(x̂T p̂z +
√
ǫ))

= −x̂T p̂y + log(
∑

z∈Z

exp(x̂T p̂z)) + 2
√
ǫ

= LNCA(x̂, p̂y, p̂Z) + 2
√
ǫ (13)

Further, we can upper bound the above loss of unit nor-

malized vectors by a loss of unnormalized vectors. For this

we would make the assumption, which empirically we have

found true, that for all data points |x| = Nx > 1. In practice

these norm are much larger than 1.

Lastly, if we denote by β = 1
NxNp

and under the as-

sumption that β < 1, we can apply the following version of

the Hoelder inequality defined for positive real numbers ai:

n
∑

i=1

aβi ≤ n1−β(

n
∑

i=1

ai)
β

to upper bound the sum of exponential terms:
∑

z∈Z

exp(x̂T p̂z) =
∑

z∈Z

exp(βxT pz)

=
∑

z∈Z

exp(xT pz)
β ≤ |Z|1−β(

∑

z∈Z

exp(xT pz))
β

Hence, the above loss LNCA with unit normalized points is

bounded as:

LNCA(x̂, p̂y, p̂Z)

≤ − xT py
|x||py|

+ log(|Z|1−β(
∑

z∈Z

exp(xT pz))
β)

= −βxT py + β log(
∑

z∈Z

exp(xT pz)) + log(|Z|1−β)

=
β

2
|x− py|2 + β log(

∑

z∈Z

exp(−1

2
|x− pz|2)) + log(|Z|1−β)

= βLNCA(x, py, pZ) + (1− β) log(|Z|) (14)

for β = 1
NxNp

. The propositions follows from Eq. (13) and

Eq. (14).

Proof Proposition 4.2: We will bound the term inside the

hinge function in Eq. (3) for normalized data points using

the bounds (10) and (11) from previous proof:

|x̂− ŷ|2 − |x̂− ẑ|2 +M = −2x̂T ŷ + 2x̂T ẑ +M

≤ −2x̂T p̂y + 2x̂T p̂z + 2
√
ǫ+M

Under the assumption that the data points and the proxies

have constant norms, we can convert the above dot products

to products of unnormalized points:

− 2x̂T p̂y + 2x̂T p̂z + 2
√
ǫ+M

= α(−2xT py + 2xT pz) + 2
√
ǫ+M

= α(|x− py|2 − |x− pz|2) + 2
√
ǫ+M

= α(|x− py|2 − |x− pz|2 +M) + (1− α)M + 2
√
ǫ
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