
2D-Driven 3D Object Detection in RGB-D Images

Jean Lahoud, Bernard Ghanem

King Abdullah University of Science and Technology (KAUST)

Thuwal, Saudi Arabia

{jean.lahoud,bernard.ghanem}@kaust.edu.sa

Abstract

In this paper, we present a technique that places 3D

bounding boxes around objects in an RGB-D scene. Our

approach makes best use of the 2D information to quickly

reduce the search space in 3D, benefiting from state-of-

the-art 2D object detection techniques. We then use the

3D information to orient, place, and score bounding boxes

around objects. We independently estimate the orienta-

tion for every object, using previous techniques that utilize

normal information. Object locations and sizes in 3D are

learned using a multilayer perceptron (MLP). In the final

step, we refine our detections based on object class relations

within a scene. When compared to state-of-the-art detection

methods that operate almost entirely in the sparse 3D do-

main, extensive experiments on the well-known SUN RGB-

D dataset [29] show that our proposed method is much

faster (4.1s per image) in detecting 3D objects in RGB-D

images and performs better (3 mAP higher) than the state-

of-the-art method that is 4.7 times slower and comparably

to the method that is two orders of magnitude slower. This

work hints at the idea that 2D-driven object detection in 3D

should be further explored, especially in cases where the 3D

input is sparse.

1. Introduction

An important aspect of scene understanding is object

detection, which aims to place tight 2D bounding boxes

around objects and give them semantic labels. Advances

in 2D object detection are motivated by impressive perfor-

mance in numerous challenges and backed up by challeng-

ing and large-scale datasets [27, 20, 2]. The progress in 2D

object detection manifested in the development and ubiq-

uity of fast and accurate detection techniques. Since 2D

object detection results are constrained to the image frame,

more information is needed to relate them to the 3D world.

Multiple techniques have attempted to extend 2D detections

into 3D using a single image [12, 13, 21], but these tech-

niques need prior knowledge of the scene and do not gen-

Figure 1. Output of our 2D-driven 3D detection method. Given an

RGB image (left) and its corresponding depth image, we place 3D

bounding boxes around objects of a known class (right). We make

best use of 2D object detection methods to hone in at possible

object locations and place 3D bounding boxes.

eralize well. With the emergence of 3D sensors (e.g. the

Microsoft Kinect), which provide depth along with color

information, the task of propagating 2D knowledge into 3D

becomes more attainable.

The importance of 3D object detection lies in provid-

ing better localization that extends the knowledge from the

image frame to the real world. This enables interaction be-

tween a machine (e.g. robot) and its environment. Due to

the importance of 3D detection, many techniques replace

the 2D bounding box with a 3D one, benefitting from large-

scale RGB-D datasets, especially SUN RGB-D [29], which

provides 3D bounding box annotations for hundreds of ob-

ject classes.

One drawback of state-of-the-art detection methods that

operate in 3D is their runtime. Despite hardware acceler-

ation (GPU), they tend to be much slower than 2D object

detection methods for several reasons. (i) One of these rea-

sons is the relative size of the 3D scene compared to its

2D image counterpart. Adding an extra spatial dimension

4622



greatly increases the search space in 3D, and thus slows

the search process down. (ii) Another reason is the in-

complete sparse data available in 3D point clouds generated

by a single RGB-D image, which suffers from weak adja-

cency/contiguity characteristics found in 2D images. (iii)

The ideal encoding and exploitation of depth information

in RGB-D images is still an open challenge. Techniques in

the literature have either tried augmenting the color chan-

nels with depth, or encoding it into a sparse voxelized 3D

scene. Using the depth information as an additional channel

aids the detection process, while still benefiting from fast

2D operations, but end results are limited to 2D detections

in the form of 2D bounding boxes or 2D object segmenta-

tions. Information that can be encoded in 3D include den-

sities, normals, gradients, signed distance functions, among

others. Nonetheless, all these 3D voxelization-based tech-

niques suffer from the large amount of missing 3D informa-

tion, whereby the observable points in a scene only consti-

tute a small fraction of 3D voxels.

In this paper, we propose a 3D object detection method

that benefits from the advances in 2D object detection to

quickly detect 3D bounding boxes. An output of our method

is shown in Figure 1. Instead of altering 2D techniques to

accept 3D data, which might be missing or not well-defined,

we make use of 2D techniques to restrict the search space

for our 3D detections. We then exploit the 3D information

to orient, place, and score the bounding box around the de-

sired object. We use previous methods to orient every ob-

ject independently, and then use the obtained rotation along

with point densities in each direction to regress the object

extremities. Our final 3D bounding box score is refined us-

ing semantic context information.

In addition to the speedup gained from honing into the

part of the 3D scene that might contain a particular object,

3D search space reduction also benefits the overall perfor-

mance of the detector. This reduction makes the 3D search

space much more amenable to a 3D method than search-

ing the entire scene from scratch, which slows down search

and generates many undesirable false positives. These false

positives could confuse a 3D classifier, which is weaker

than the 2D classifier because it is trained on sparse (mostly

empty) 3D image data.

2. Related Work

There is a rich literature on computer vision techniques

that detect objects by placing rectangular boxes around

them. We here mention some of the most representa-

tive methods that address this problem, namely DPM (de-

formable parts model) [3] and Selective Search [33] before

the ubiquity of deep learning based methods, as well as, rep-

resentative deep networks for this task including R-CNN

[6], Fast R-CNN [5], Faster R-CNN [24], ResNet [10],

YOLO [23], and R-FCN [14]. All of these techniques tar-

get object detection in the 2D image plane only, and have

progressed to become very fast and efficient for this task.

With the emergence of 3D sensors, there have been

numerous works that use 3D information to better local-

ize objects. Here, we mention several of these meth-

ods [18, 19, 15, 32], which study object detection in the

presence of depth information. Other techniques seman-

tically segment images based on RGB and depth, such as

[9, 8, 17, 25, 28]. All of these 3D-aware techniques use the

additional depth information to better understand the im-

ages in 2D, but do not aim to place correct 3D bounding

boxes around detected objects.

The method of [30] uses renderings of 3D CAD models

from multiple viewpoints to classify all 3D bounding boxes

obtained from sliding a window over the whole space. Us-

ing CAD models restricts the classes and variety of objects

that can be detected, as it is much more difficult to find 3D

models of different types and object classes than photograph

them. Also, the sliding window strategy is computationally

demanding, rendering this technique quite slow. Similar de-

tectors use object segmentation along with pose estimation

to represent objects that have corresponding 3D models in a

compiled library [7]. Nevertheless, we believe that correct

3D bounding box placement benefits such a task, and model

fitting can be performed depending on the availability of

these models. When compared to [7], our method does not

require 3D CAD models, is less sensitive to 2D detection

errors, and improves detection using context information.

Other methods propose 3D boxes and score them ac-

cording to hand-crafted features. The method proposed in

[1] places 3D bounding boxes around objects in the con-

text of autonomous driving. The problem is formulated

as inference in an MRF, which generates proposals in 3D

and scores them according to hand-crafted features. This

method uses stereo imagery as input and targets only the

few classes specific to street scenes. For indoor scenes,

the method presented in [19] uses 2D segmentation to pro-

pose candidate boxes and then classifies them by forming

a conditional random field (CRF) that integrates informa-

tion from different sources. The recent method of [26] pro-

poses a cloud of oriented gradients descriptor, and uses it,

along with normals and densities, to classify 3D bounding

boxes. This method also uses contextual features to better

propose boxes in 3D by exploiting a cascaded classification

framework from [11]. This method achieves state-of-the-art

performance on SUN-RGBD; nevertheless, computing the

features for all 3D cuboid hypotheses is very slow (10-20

minutes per class).

Recent works have also applied ConvNets for 3D object

detection. One 3D ConvNet approach is presented in [31],

which takes a 3D volumetric scene from the RGB-D image

and outputs 3D bounding boxes. The two main modules in

this approach are the Region Proposal Network (RPN) and

4623



the Object Recognition Network (ORN). The use of object

proposals is inspired from 2D object detection techniques.

Nevertheless, the two networks do not share layers and

computations are done separately. Moreover, the 3D encod-

ing of depth into a truncated signed function, and 3D convo-

lutions are much slower when compared to their 2D coun-

terparts. This ConvNet approach takes about 20s to run on

a single RGBD frame. Another recent ConvNet approach

[16] presents a transformation network that takes as input

the 3D volumetric representation of the scene and aligns it

with a known template. 3D object detection is then based

on local object features, and on holistic scene features. Al-

though this algorithm is fast at test time (0.5s), training is

computationally expensive (one week with 8 GPUs), and

it does not generalize to all scene configurations (tested on

∼7% of SUN RGB-D testing set) .

Contributions. We propose a fast technique that places

bounding boxes around objects using RGB-D data only.

Our method does not use CAD models, but places 3D

bounding boxes, which makes it easily generalizable to

other object classes. By honing in on where particular ob-

ject instances could be in 3D (using 2D detections), our 3D

detector does not need to exhaustively search the whole 3D

scene and encounters less false positives that might confuse

it. When compared against two state-of-the-art 3D detectors

that operate directly in 3D, our method achieves a speedup

that does not come at the expense of detection accuracy.

3. Methodology

Given an RGB image and its corresponding depth im-

age, we aim to place 3D bounding boxes around objects

of a known class. Our 3D object detection pipeline is com-

posed of four modules (refer to Figure 2 for an overview). In

the first module, we use a state-of-the-art 2D object detec-

tion method, specifically Faster R-CNN [24], to position 2D

bounding boxes around possible objects. Each 2D bounding

box extends in 3D to what we call a frustum. In the second

module and unlike previous methods [31] that assume all

objects in the scene share the same orientation, we estimate

scene and individual object orientations, where every ob-

ject has its own orientation. In the third module, we train

a Multi-Layer Perceptron to regress 3D object boundaries

in each direction, using point densities along oriented di-

rections. In the final module, we refine the detection scores

using contextual information that is based on object class

co-occurrence and class-to-class distance.

3.1. Slit Detection

The first step in our 3D detection pipeline is to get an

initial estimate of the location of objects in 2D. Here, we

choose to use the Faster R-CNN model [24] with VGG-16

net to train a detector on the set of object classes found in

the 3D dataset (SUN-RGBD). In 2D, the detected object is

represented by a 2D window. In 3D, this translates into a

3D extension, which we call a frustum. An object’s frus-

tum corresponds to the 3D points whose projections onto

the image plane are contained within the 2D detection win-

dow. As such, the potential object would be present in the

region bounded by the planes passing through the camera

center and the line segments of the bounding box in the 2D

image. A frustum resembles a cone with a rectangular base.

In essence, this region provides a much smaller 3D search

space than the whole region captured by the RGB-D sensor.

In addition to that, each frustum is designated with only the

object class that the 2D detector returns.

2D object detection benefits from the continuity of infor-

mation in the image, and 2D convolutions include RGB in-

formation for all the locations targeted. This makes the 2D

information more reliable for object detection and classifi-

cation, when compared to the missing 3D data in the vox-

elization of the 3D scene. Moreover, a forward pass through

the Faster R-CNN runs at least at 5 fps on a GPU, which is

two orders of magnitude faster than Deep Sliding Shapes

(DSS) [31] that uses 3D convolutions.

Within every frustum, 3D points are spread between the

point with the smallest depth and the one with the largest.

These points retain all the depth information needed to

properly detect the object. When compared to the exhaus-

tive sliding window approach, this is similar to fixating at a

specific 2D region instead of searching the whole area look-

ing for all object classes.

3.2. Estimating 3D Object Orientation

Thus far, we have determined the regions that most likely

contain an object class. Our next step is to estimate the ori-

entation of the object within this region. Since 3D bounding

boxes are of Manhattan structure, object orientations must

then be aligned with the best Manhattan frame. This frame

would estimate the orientation of the object, since most 3D

objects found in indoor scenes can be approximated as Man-

hattan objects, whose normals are aligned with three main

orthogonal directions.

To compute this Manhattan frame, we use the Manhat-

tan Frame Estimation (MFE) technique proposed in [4] to

independently estimate the orientation of the object within

every frustum. In summary, the rotation R can be found by

solving the following optimization problem

min
R,X

1

2
‖X−RN‖2F + λ‖X‖1,1 (1)

where N is the matrix containing the normals at every 3D

point, λ is a constant parameter, and X is a slack variable

introduced to make RN sparse.

Here, we assume that there is only one main object

within each frustum. We initially compute the normals for

4624



Figure 2. Proposed pipeline. Starting with an RGB image and its corresponding depth image, 2D detection window is used to crop the 3D

scene into a frustum. Normals are then used to estimate the object orientation within the frustum. At the final step, an MLP regressor is

used to regress the object boundaries based on the histograms of points along x,y, and z directions.

all the 3D points in the image and use MFE to orient the

whole scene with respect to the camera. For every frustum,

we initialize with the room orientation and use the normals

of the points within to estimate the object orientation. In

this paper, we modify MFE to restrict the rotation to be

around the axis along the normal of the floor (yaw angle

only). This restriction is a viable assumption for most of the

objects in indoor scenes and aligns with how SUN RGB-D

dataset was annotated. For objects of non-Manhattan struc-

ture (e.g. round objects), many orientations are considered

correct. The output of the MFE technique would still be a

feasible orientation for object detection.

3.3. Bounding Box Regression

In this step, we need to fit the 3D bounding box that best

describes the object being detected. Given the 3D points

within the frustum along with the estimated orientation of

the object, we place an orthonormal system centered at the

centroid of the 3D points and oriented with the estimated

orientation. We then construct histograms for the coordi-

nates of the 3D points along every direction. These his-

tograms are then used as input to a multilayer perceptron

(MLP) network that learns to regress the boundaries of the

bounding box of the object from training data. For every ob-

ject class, a network with one hidden layer is trained to take

as input the coordinate histograms and output the bounding

box boundaries of the object along every direction. His-

tograms describe the density of points along every direc-

tion, and high densities correspond to surface locations. We

choose a constant bin size to preserve real distances, and

choose a constant histogram length to account for all object

sizes. An example for the input to the MLP is presented in

the supplementary material.

The training is done on every direction separately

namely, length, width, and height. During testing, the

height is known from the ground orientation, and the length

and width are specified from the broader distribution of the

points along every direction within the frustum. To form the

training set, we use the 2D groundtruth windows along with

the groundtruth 3D boxes. Since many of the indoor objects

are placed on the floor, we use height information from the

training set to clip the height of objects close to the floor to

start from the floor.

Once the 3D bounding box is obtained, we assign to it a

score which is a linear combination of two scores: (1) the

initial 2D detection score, and (2) 3D point density score.

The 3D point density score is computed by training a lin-

ear SVM classifier on the 3D point cloud density of the 3D

cuboids for all classes. This simple 3D feature is similar to

and inspired by the one used in [26]. Clearly, other 3D fea-

tures can also be incorporated, but at the expense of added

computational cost. We train our classifier using all possible

rotations of objects, along with slight variations in object lo-

cations.

3.4. Refinement Based on Context Information

Given a set of 3D bounding boxes {Bi : i ∈
{1, 2, ..., nb}} where nb is the number of boxes, we aim

to refine their scores based on contextual information. We

associate to every box Bi a label li where li ∈ {0, 1, ..., nl}.

4625



Figure 3. We model the bounding box labels as a set of discrete

random variables that can take discrete values. The factor graph is

composed of a set of variable nodes (bounding box labels), and a

set of factor nodes between every two boxes in a given scene.

Here nl is the number of object class labels considered, and

the zero label corresponds to the background. We assume

that the bounding box labels L = {l1, l2, ..., lnb
} are a set of

discrete random variables that has a Gibbs distribution asso-

ciated with a factor graph G. The factor graph is composed

of a set of variable nodes (bounding box labels), and a set of

factor nodes P , which we choose to be any combination of

2 bounding boxes. The graph is constructed by assigning all

objects in a given scene to one particular node. Our graph

model is shown in Figure 3. In this case, we have

PU,B(l) ∝ exp





nb
∑

i=1

Ui(li) +
∑

(i,j)∈P

B(li, lj)





Here U an B are the unary and binary log potential func-

tions. Our goal is to find the labelling that maximizes the

aposteriori (MAP),

L = argmax
l

PU,B(l)

The above problem can be transformed into a linear pro-

gram (LP) by introducing the local marginal variables pu
and pb [34],

(pu, pb) = argmax

nb
∑

i=1

Epu
[Ui(li)] +

∑

(i,j)∈P

Epb
[B(li, lj)]

Probability associated with unary term. To model the

unary potential pu, which represents the probability of giv-

ing box Bi a label li, we train an error-correcting output

codes multi-class model using one-versus-one SVM classi-

fiers with cubic polynomial kernels. We append two types

of features, geometric features and deep learning features.

The geometric features consist of the length, width, height,

aspect ratios, and volume. To extract the deep learning fea-

tures, we run Fast RCNN [5] on the reprojection of the 3D

box into the image plane, and use the features from the fully

connected layer (FC7). During testing, we transform classi-

fication scores to class posterior probabilities and use them

as unary probabilities.

Probability associated with binary term. For every pair

of 3D boxes, we compute the probability of assigning one

box a label li given that the other is labelled lj . We

make use of two relations that occur within a 3D scene,

class co-occurrence and class spatial distribution. For the

co-occurrence probability po, we use the number of co-

occurences of every combination of two classes in the train-

ing set. Given a label li, po is the ratio between the number

of occurrence of lj and all other occurrences. As for the

spatial relation, we use kernel density estimation (KDE) to

assign the probability pd based on the Hausdorff distance

between a pair of bounding boxes. Finally, we define the

final binary term probability as: pb = pαo p
1−α
d .

To trade-off between the unary and binary terms, we use

the softmax operator. To infer the final set of labels, we use

the LP-MAP technique of [22]. We then compare the final

set of labels to the initial ones and increase the score of the

ones that retain their initial labels.

4. Experiments

We evaluate our technique on the SUN RGB-D dataset

[29] and compare with two state-of-the-art methods: Deep

Sliding Shapes (DSS) [31] and Cloud of Oriented Gradi-

ents (COG) [26]. We adopt the 10 categories chosen by

COG to train and test on. We also use the dataset modifica-

tion presented in [31], which provides the floor orientation.

We adopt the same evaluation metric as these two methods,

i.e. we assume that all bounding boxes are aligned with the

gravity direction.

Evaluation Metric. We base our evaluation on the con-

ventional 3D volume Intersection over Union (IoU) mea-

sure. We consider a detection to be correct, if the volume

IoU of the resulting bounding box with the groundtruth box

is larger than 0.25. We follow the same evaluation strategy

adopted by both DSS and COG. We plot the precision-recall

graphs for the 10 classes, and calculate the area under the

curve, represented by the Average Precision (AP). Similar

to previous methods, we compare to the amodal groundtruth

bounding box, which extends beyond the visible range.

Experimental Setup. In our 2D object detector, we fol-

low dataset augmentation convention and add flipped im-

ages to the training set. We initialize all convolution layers

in the Faster R-CNN networks with a model pre-trained on

4626



Figure 4. Precision-Recall curve for the proposed 3D object bounding boxes for the classes considered in [26]. We here test the importance

of each of our modules; namely, label refinement based on context information, object orientation, and MLP regression.

ImageNet [27]. We also adopt the 4-step alternating train-

ing described in [24]. In all our experiments, we consider

the 1st percentile of all the 3D point coordinates along the

direction that is normal to the floor as the camera height.

After our initial 2D detection, we remove all boxes that

overlap by more than 30% with higher scoring boxes, and

remove all boxes with very low scores (less than 0.05). To

orient the main Manhattan frame, we subsample the nor-

mals 10 times, which enables real-time processing for this

stage of the pipeline. Once the room orientation is esti-

mated, we compute orientations and regressions of every

frustum in parallel. Further details on the implementation

of the bounding box regression (Section 3.3) and refinement

using contextual relations (Section 3.4) are provided in the

supplementary material.

Computation Speed. We implement our algorithm in

MATLAB, with a 12-core 3.3 GHz CPU and a Titan X

GPU. Faster R-CNN training and testing is done using

Caffe. The initial object detection takes 0.2 seconds only.

When run in parallel, object orientation estimation takes

about 1 second for all objects. MLP regression takes about

1.5 seconds for all objects along x, y, and z directions. The

context-based object refinement runs in 1.45 seconds, in-

cluding the time to set up the factor graph and infer the final

labels. In summary, our detection method requires a total of

4.15 seconds for every RGB-D image pair.

4.1. Quantitative Comparison

First, we study the importance of every stage in our pro-

posed pipeline. We plot the precision-recall curve for dif-

ferent variants of our method (see Figure 4). (1) The first

variant is denoted ’no refinement’, where we do not perform

the last refinement step that incorporates the scene context

information. In this case, we use the labels that are output

by the 2D object detector along with their corresponding

scores. (2) We also try to fit boxes to frustums, when all the

boxes in all frustums are given the same orientation (room

orientation). (3) The last variant of our algorithm does not

regress object boundaries using the MLP regressor. We re-

place the regressed box by one that extends up to a per-

centile of the maximum and minimum coordinate in every

direction. Clearly, this cannot handle amodal boxes.

Fixed vs Independent Orientation. We study the impor-

tance of correctly orienting 3D bounding boxes. When

compared to one fixed orientation, computing the correct

orientation for each bounding box increases the final score

(Table 1) because of the higher overlap between objects of

the same orientation and because the orientation is crucial

to fit the correct object boundaries in the MLP regressor.

4627



Runtime mAP

COG [26] 58.26 63.67 31.80 62.17 45.19 15.47 27.36 51.02 51.29 70.07 10-30min 47.63

DSS [31] 44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 19.55s 42.1

Ours no regression 29.79 45.22 6.90 10.16 7.29 2.21 10.43 22.96 18.03 59.62 1.3s 21.26

Ours no orientation 25.18 56.20 23.35 31.03 9.20 9.55 25.86 33.95 23.00 65.11 1.8s 30.24

Ours no refinement 40.41 59.31 30.10 46.01 27.26 24.65 40.57 47.66 34.38 77.49 2.7s 42.79

Ours final 43.45 64.48 31.40 48.27 27.93 25.92 41.92 50.39 37.02 80.40 4.15s 45.12

Table 1. Average precision for the 10 classes considered in our experiments.

The Importance of Regression. The importance of re-

gression lies in both localizing the object center and estimat-

ing bounding box dimensions. Due to the noisy nature of

the 3D data along with the presence of background points,

the centroid of the 3D points within the frustum is different

than the center of the object. Without regression, the detec-

tion score drops significantly (Table 1). This is caused by

the incorrect object sizes that directly relate to the detection

score. Moreover, since the groundtruth boxes are amodal,

meaning that they extend beyond the visible part, regression

is needed to extend boxes beyond the visible points.

The Importance of Contextual Information. In the final

form of our technique, we incorporate context information

to refine the final detection. This refinement increases the

mAP score by more than 2% (Table 1). When compared to

the ”no refinement” variant in Figure 4, we notice that the

refinement enhances the precision at the same recall. On

the other hand, it achieves the same maximum recall, since

it does not alter the number of 3D boxes nor their locations.

In the second part, we compare against two state-of-

the-art methods, DSS and COG (Table 1). We report the

runtime and AP results directly from [31] and [26]. We

present two versions of our technique: the final version

(that includes all the modules in our pipeline) and the no-

refinement version (that does not employ context informa-

tion but is about 35 % faster). The no-refinement version

is 7× faster than DSS and is slightly better in terms of ac-

curacy. The final version is 4.7× faster and 3% mAP more

accurate than DSS (45.1% mAP vs 42.1% mAP). It is also

about two orders of magnitude faster than COG, while still

achieving a comparable detection performance.

Unlike DSS, which exploits the color information at late

stages of detection, our technique utilizes this information

at the beginning of the detection process. We believe that

the color information is a crucial part in the 3D object de-

tection, due to the high noise in the 3D information. Our

approach mitigates the extensive 3D search with many erro-

neous boxes arising from the absence of color information.

Furthermore, as shown in our experiments, greatly reducing

the search space using color information does not come at

the expense of detection accuracy.

When compared to COG, our method only uses object-

to-object relations and not object-to-scene relations. We

do not exhaustively search for 3D bounding boxes, but still

manage to achieve a comparable accuracy, while being two

orders of magnitude faster. The COG method spends most

of the time computing features for all possible 3D bounding

boxes locations, sizes, and orientations. Our method hones

in on likely object locations, and uses only one orientation.

The COG method does not perform much better than our

result because of the many object proposals that might con-

fuse the classifier, especially with the sparse 3D data.

4.2. Qualitative Comparison

Now, we show some of our qualitative results. In Figure

5, we overlay the detection results (in red) of our method

on the 3D point clouds of eight RGB-D images from SUN-

RGBD and compare them to the 3D groundtruth bounding

boxes shown in green. Our method is able to correctly place

the bounding box in terms of orientation and extent. We also

show false detections from our proposed technique in Fig-

ure 6. This includes objects that are not detected in 2D, or

objects that are misplaced using the output of the MLP. Mis-

placement occurs due to background points or incorrect re-

gression. Also, false positives include objects from unseen

object classes that look similar to a class seen in training

(e.g. counter vs. desk and drawer vs. dresser).

5. Conclusion

We propose a fast algorithm for 3D object detection in

indoor scenes. We use 2D detections to hone in on the po-

tential 3D locations of particular object classes in 3D (called

slit generation and carving), which enables the use of a

simple 3D classifier and search mechanism. When com-

pared to two recent state-of-the-art methods, our method is

3 times faster and achieves better (+3% mAP) detection per-

formance than one of the methods, and two orders of magni-

tude faster than the other while still performing comparably

on the challenging and large-scale SUN-RGBD dataset.

Acknowledgments. This work was supported by the

King Abdullah University of Science and Technology

(KAUST) Office of Sponsored Research.

4628



Figure 5. Detections obtained from our method having a score larger than a constant threshold (red). Groundtruth boxes are shown in

(green).

Figure 6. False detections from our proposed technique, including objects that are not detected in 2D, objects that are misplaced using the

output of the MLP, and false positives from unseen object classes, but look similar to a class in the training set (counter vs desk, drawer vs

dresser).

4629



References

[1] X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fi-

dler, and R. Urtasun. 3d object proposals for accurate object

class detection. In Advances in Neural Information Process-

ing Systems, pages 424–432, 2015.

[2] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. IJCV, 88(2):303–338, 2010.

[3] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. PAMI, 32(9):1627–1645, 2010.

[4] B. Ghanem, A. Thabet, J. C. Niebles, and F. C. Heilbron. Ro-

bust manhattan frame estimation from a single rgb-d image.

In CVPR, pages 3772–3780. IEEE, 2015.

[5] R. Girshick. Fast r-cnn. In ICCV, pages 1440–1448, 2015.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, pages 580–587, 2014.

[7] S. Gupta, P. Arbeláez, R. Girshick, and J. Malik. Aligning 3d

models to rgb-d images of cluttered scenes. In CVPR, pages

4731–4740, 2015.

[8] S. Gupta, P. Arbelaez, and J. Malik. Perceptual organiza-

tion and recognition of indoor scenes from rgb-d images. In

CVPR, pages 564–571, 2013.

[9] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning

rich features from rgb-d images for object detection and seg-

mentation. In ECCV, pages 345–360. Springer, 2014.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778, 2016.

[11] G. Heitz, S. Gould, A. Saxena, and D. Koller. Cascaded clas-

sification models: Combining models for holistic scene un-

derstanding. In Advances in Neural Information Processing

Systems, pages 641–648, 2009.

[12] D. Hoiem, A. A. Efros, and M. Hebert. Geometric context

from a single image. In ICCV 2005, volume 1, pages 654–

661. IEEE, 2005.

[13] D. Hoiem, A. A. Efros, and M. Hebert. Putting objects in

perspective. IJCV, 80(1):3–15, 2008.

[14] K. H. J. S. Jifeng Dai, Yi Li. R-FCN: Object detection via

region-based fully convolutional networks. arXiv preprint

arXiv:1605.06409, 2016.

[15] B.-s. Kim, S. Xu, and S. Savarese. Accurate localization of

3d objects from rgb-d data using segmentation hypotheses.

In CVPR, pages 3182–3189, 2013.

[16] Y. Z. M. B. P. Kohli, S. Izadi, and J. Xiao. Deepcontext:

Context-encoding neural pathways for 3d holistic scene un-

derstanding. arXiv preprint arXiv:1603.04922, 2016.

[17] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena. Se-

mantic labeling of 3d point clouds for indoor scenes. In

Advances in Neural Information Processing Systems, pages

244–252, 2011.

[18] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical

multi-view rgb-d object dataset. In ICRA, pages 1817–1824.

IEEE, 2011.

[19] D. Lin, S. Fidler, and R. Urtasun. Holistic scene understand-

ing for 3d object detection with rgbd cameras. In ICCV,

pages 1417–1424, 2013.

[20] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In ECCV, pages 740–755. Springer,

2014.

[21] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of

exemplar-svms for object detection and beyond. In 2011

ICCV, pages 89–96. IEEE, 2011.

[22] A. F. Martins, M. A. Figeuiredo, P. M. Aguiar, N. A. Smith,

and E. P. Xing. An augmented lagrangian approach to con-

strained map inference. 2011.

[23] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In

CVPR, pages 779–788, 2016.

[24] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages

91–99, 2015.

[25] X. Ren, L. Bo, and D. Fox. Rgb-(d) scene labeling: Features

and algorithms. In CVPR, pages 2759–2766. IEEE, 2012.

[26] Z. Ren and E. B. Sudderth. Three-dimensional object detec-

tion and layout prediction using clouds of oriented gradients.

CVPR, 2016.

[27] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

IJCV, 115(3):211–252, 2015.

[28] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor

segmentation and support inference from rgbd images. In

ECCV, pages 746–760. Springer, 2012.

[29] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d

scene understanding benchmark suite. In CVPR, pages 567–

576, 2015.

[30] S. Song and J. Xiao. Sliding shapes for 3d object detection

in depth images. In ECCV, pages 634–651. Springer, 2014.

[31] S. Song and J. Xiao. Deep sliding shapes for amodal

3d object detection in rgb-d images. arXiv preprint

arXiv:1511.02300, 2015.

[32] S. Tang, X. Wang, X. Lv, T. X. Han, J. Keller, Z. He, M. Sku-

bic, and S. Lao. Histogram of oriented normal vectors for

object recognition with a depth sensor. In ACCV, pages 525–

538. Springer, 2012.

[33] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.

Smeulders. Selective search for object recognition. IJCV,

104(2):154–171, 2013.

[34] M. J. Wainwright, M. I. Jordan, et al. Graphical models,

exponential families, and variational inference. Foundations

and Trends R© in Machine Learning, 1(1–2):1–305, 2008.

4630


