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Abstract

This paper proposes an automatic spatially-aware con-

cept discovery approach using weakly labeled image-text

data from shopping websites. We first fine-tune GoogleNet

by jointly modeling clothing images and their correspond-

ing descriptions in a visual-semantic embedding space.

Then, for each attribute (word), we generate its spatially-

aware representation by combining its semantic word vec-

tor representation with its spatial representation derived

from the convolutional maps of the fine-tuned network. The

resulting spatially-aware representations are further used

to cluster attributes into multiple groups to form spatially-

aware concepts (e.g., the neckline concept might consist

of attributes like v-neck, round-neck, etc). Finally, we de-

compose the visual-semantic embedding space into multi-

ple concept-specific subspaces, which facilitates structured

browsing and attribute-feedback product retrieval by ex-

ploiting multimodal linguistic regularities. We conducted

extensive experiments on our newly collected Fashion200K

dataset, and results on clustering quality evaluation and

attribute-feedback product retrieval task demonstrate the ef-

fectiveness of our automatically discovered spatially-aware

concepts.

1. Introduction

The exponential growth of online fashion shopping web-

sites has encouraged techniques that can effectively search

for a desired product from a massive collection of cloth-

ing items. However, this remains a particularly challeng-

ing problem since, unlike generic objects, clothes are usu-

ally subject to severe deformations and demonstrate signif-

icant variations in style and texture, and, most importantly,

the long-standing semantic gap between low-level visual

features and high-level intents of customers is very large.

To overcome the difficulty, researchers have proposed in-

teractive search to refine retrieved results with humans in

the loop. Given candidate results, customers can provide
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Figure 1. (a) We propose a concept discovery approach to auto-

matically cluster spatially-aware attributes into meaningful con-

cepts. The discovered spatially-aware concepts are further utilized

for (b) structured product browsing (visualizing images according

to selected concepts) and (c) attribute-feedback product retrieval

(refining search results by providing a desired attribute).

various feedback, including the relevance of displayed im-

ages [20, 4], or tuning parameters like color and texture,

and then results are updated correspondingly. However, rel-

evance feedback is limited due to its slow convergence to

meet the customer requirements. In addition to color and

texture, customers often wish to exploit higher-level fea-

tures, such as neckline, sleeve length, dress length, etc.

Semantic attributes [13], which have been applied ef-

fectively to object categorization [15, 27] and fine-grained

recognition [12] could potentially address such challenges.

They are mid-level representations that describe semantic

properties. Recently, researchers have annotated clothes

with semantic attributes [9, 2, 8, 16, 11] (e.g., material, pat-

tern) as intermediate representations or supervisory signals

to bridge the semantic gap. However, annotating semantic

attributes is costly. Further, attributes conditioned on ob-

ject parts have achieved good performance in fine-grained

recognition [3, 33], confirming that spatial information is

critical for attributes. This also holds for clothing images.

For example, the neckline attribute usually corresponds to

the top part in images while the sleeve attribute ordinarily
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Figure 2. Overview of our approach. Our approach mainly contains three parts: 1. Joint embedding space training. A joint visual-semantic

embedding space is trained using clothing images and their product descriptions. 2. Spatially-aware concept discovery. We use neural

activations provided by global pooling (GAP) layer to generate attribute activation maps (AAMs) of attributes. The AAM captures the

spatial information of attributes (i.e., what is the spatial location an attribute usually refers to). By combining attributes’ spatial information

and their semantic representations obtained from a word2vec model, we cluster attributes into concepts. 3. Concept subspace learning. For

each discovered concept, we further train a sub-network to effectively measure the similarity of images according to this concept only.

relates to the left and right side of images.

To address the above limitations, we jointly model cloth-

ing images and their product descriptions with a visual-

semantic embedding, and propose a novel approach that

automatically discovers spatially-aware concepts, each of

which is a collection of attributes describing the same char-

acteristic (e.g., if the concept is color then the attributes

could contain yellow and blue, as shown in Figure 1(a)).

In addition, we learn a subspace embedding for each dis-

covered concept to facilitate a structured exploration of

the dataset based on the concept of interest (Figure 1(b)).

More importantly, inspired by [10], we leverage the learned

visual-semantic space to exploit multimodal linguistic reg-

ularities for attribute-feedback product retrieval. For exam-

ple, an image of a “white sleeveless dress” − “sleeveless” +
“long-sleeve” would be near images of “white long-sleeve

dress”. In contrast to [10] which requires explicitly speci-

fying the attribute to remove, we implicitly remove corre-

sponding attributes based on the discovered concepts (Fig-

ure 1(c)).

Figure 2 provides an overview of the framework. Specif-

ically, our framework contains the following three steps (1)

we first train a joint visual-semantic embedding space us-

ing clothing images and their product descriptions. Given

an image, we compute its features with GoogleNet, which

are further projected into the embedding space to minimize

the distance to its product description encoded by bag-of-

words of attributes. By fine-tuning GoogleNet in an end-

to-end fashion, we train a discriminative model that con-

tains localization information of attributes; (2) we then ob-

tain the spatial representation for each attribute, indicating

where in images the attribute mostly corresponds to, from

the attribute activation maps. These spatial representations

are further utilized to augment their corresponding semantic

word representations (word vectors) produced from a skip-

gram model. Further, clustering is performed to discover

concepts, each of which contains semantically related at-

tributes (e.g., maxi, midi, mini are all different dress length);

(3) we further disentangle the trained visual-semantic em-

bedding by training a subspace embedding for each discov-

ered concept, in which the similarities among items can be

measured based on the corresponding concept only. The

transformation of images into a subspace embedding fa-

cilitates attribute-feedback clothing search and structured

browsing of fashion images.

Given the fact that existing datasets only contain im-

ages and annotated attributes (which are often very sparse)

rather than image and product description pairs, we con-
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structed the Fashion200K dataset, which contains more

than 200,000 clothing images of five categories (dress, top,

pants, skirt and jacket) and their associated product descrip-

tions from online shopping websites. These five classes are

the most important verticals in fashion due to their various

styles and occasions. Thus, we focus on these categories

in our dataset, but our method is applicable to any fash-

ion categories. We conduct extensive experiments on this

dataset to validate the efficacy of the automatically discov-

ered concepts in attribute-feedback product retrieval as well

as structured fashion image browsing.

Our main contributions are two-fold. First, we demon-

strate that the augmentation of semantic word vectors for

attributes with their spatial representations can be used to

effectively cluster attributes into semantically meaningful

and spatially-aware concepts. Second, we leverage seman-

tic regularities in the visual-semantic space for attribute-

feedback clothing retrieval.

2. Related Work

Interactive image search. Extensive studies have been

conducted on interactive image search, aiming to im-

prove retrieved results from search engines with user feed-

back [20, 11, 4] (See [35] for a comprehensive review). The

basic idea is to refine the results by incorporating feedback

from users, including the relevance of the candidates, and

tuning low-level parameters like color and texture. In prac-

tice, relevance feedback requires a large number of itera-

tions to converge to user intent. Also, it requires manual

annotations to define the relative attributes, which limits its

scalability. In addition, when searching clothing images,

customers generally focus on certain higher-level charac-

teristics, such as neckline, sleeve length, etc., thus rendering

relevance feedback less useful.

Attributes for clothing modeling. There have been nu-

merous works focusing on utilizing semantic attributes as

mid-level representations for clothing modeling. For in-

stance, Chen et al. [2] learned semantic attributes for cloth-

ing on the human upper body. Huang et al. [8] built tree-

structured layers for all attribute categories to form a se-

mantic representation for clothing images. Veit et al. [29]

learned visually relevant semantic subspaces using a multi-

query triplet network. Kovashka et al. [11] utilized rela-

tive attributes with ranking functions instead of using bi-

nary feedback for retrieval tasks. In contrast, we propose a

novel concept discovery framework, in which a concept is

a collection of automatically identified attributes derived by

jointly modeling image and text.

Visual concept discovery. To exploit the substantial

amounts of weakly labeled data, researchers have proposed

various approaches to discover concepts. Sun et al. [24]

combined visual and semantic similarities of concepts to

cluster concepts while ensuring their discrimination and

compactness. Vittayakorn et al. [30] and Berg et al. [1] ver-

ified the visualness of attributes, and [30] also uses neural

activations to learn the characteristics of each attribute. Vac-

caro et al. [28] utilized a topic model to learn latent concepts

and retrieve fashion items based on textual specifications.

Singh et al. [22] discovered pair-concepts for event detec-

tion and discard irrelevant concepts by the co-occurrences

of concepts. Recently, some works discovered the spatial

extents of concepts. Xiao and Lee [32] discovered visual

chains for locating the image regions that are relevant to one

attribute. Singh and Lee [23] introduced a deep network to

jointly localize and rank relative attributes. However, these

approaches involve training a single model for each individ-

ual attribute, which is not scalable.

Visual-semantic joint embedding. Our work is also re-

lated to visual-semantic embedding models [5, 10, 31, 14,

7]. Frome et al. [5] recognize objects with a deep visual-

semantic embedding model. Kiros et al. [10] adopted an

encoder-decoder framework coupled with a contrastive loss

to train a joint visual-semantic embedding. Wang et al. [31]

combined cross-view ranking loss and within-view struc-

ture preservation loss to map images and their descriptions.

Beyond training a joint visual-semantic embedding with im-

age and text pairs as in these works, we further decom-

pose the trained embedding space into multiple concept-

specific subspaces, which facilitates structured browsing

and attribute-feedback product retrieval by exploiting mul-

timodal linguistic regularities.

3. Fashion200K Dataset

There have been several clothing datasets collected re-

cently [16, 8, 21, 6, 7]. However, none of these datasets

are suitable for our task because they do not contain de-

scriptions of images. This prevents us from learning se-

mantic representations for attributes using word2vec [18].

Thus, we collected the Fashion200K dataset and automati-

cally discover concepts from it.

We first crawled more than 300,000 product images and

their product descriptions from online shopping websites

and removed the ones whose product descriptions contain

fewer than four words, resulting in over 200,000 images.

We then split them into 172,049 images for training, 12,164

for validation, and 25,331 for testing. For cleaning prod-

uct descriptions, we deleted stop words, symbols, as well as

words that occur fewer than 5 times. Each remaining word

is regarded as an attribute. Finally, there are 4,404 attributes

for training the joint embedding.

Example clothing image and description pairs are shown

in Figure 3. Since we wish to automatically discover con-

cepts from this noisy dataset and learn concept-level sub-

space features, we do not conduct any manual annotations

for this dataset. Note that as a preprocessing step, we

trained a detector using the MultiBox model [25] for all five
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Figure 3. Examples of the image-text pairs in Fashion200K.

categories and run them on all images. Only the detected

foregrounds are cropped and used as input to our model.

4. Our Approach

In this section, we present the key components of the

proposed concept discovery approach shown in Fig. 2,

including visual-semantic embedding learning, spatially-

aware concept discovery and concept subspace learning.

Since our method leverages spatial information of an at-

tribute, and the same attribute in different types of cloth-

ing (e.g., “short” in “short dress” and “short pants”) will

have different spatial characteristics, we train an individual

model for each category in our dataset. For simplicity in

notation and illustration, we only show the concept discov-

ery approach for dresses, while the same pipeline is applied

to other categories in the same fashion. Results of all cate-

gories are shown and evaluated in our experiments.

4.1. Visual­semantic Embedding

To fully explore the substantial weakly labeled web data

for mining concepts, we first train a joint visual-semantic

embedding model with image-text pairs by projecting a

product image and its associated text into a joint embedding

space. Following [10], we also utilize a stochastic bidirec-

tional contrastive loss to achieve good convergence.

More formally, let I denote an image and S =
{w1, w2, ..., wN} its corresponding text, where wi is the

i-th attribute (word) in the product description. Let WI

denote the image embedding matrix, and WT denote the

attribute embedding matrix. We first represent the i-th word

wi with one-hot vector ei, which is further encoded into the

embedding space by vi = WT · ei. We then represent the

product description with bag-of-words v = 1

N

∑
i vi. Sim-

ilarly, for the image I, we first compute its feature vector

f ∈ R
2048 with a GoogleNet model [26] parameterized by

weights V after the global average pooling (GAP) layer as

shown in Figure 2. Then we project the feature vector into

the embedding space, in which the original image is repre-

sented as x = WI · f .

The similarity between an image and its description is

computed with cosine similarity, i.e., d(x,v) = x·v, where

x and v are normalized to unit norm. Finally, the joint em-

bedding space is trained by minimizing the following con-

trastive loss:

min
Θ

∑

x,k

max(0,m− d(x,v) + d(x,vk))+

∑

v,k

max(0,m− d(v,x) + d(v,xk)),
(1)

where Θ = {WI,WT,V} contains the parameters to be

optimized, and vk denotes non-matching descriptions for

image x while xk are non-matching images for description

v. By minimizing this loss function, the distance between x

and its corresponding text v is forced to be smaller than the

distance from unmatched descriptions vk by some margin

m. Vice versa for description v.

4.2. Spatially­aware Concept Discovery

The training process of a joint visual-semantic embed-

ding will lead to a discriminative CNN model, which con-

tains not only the semantic information (i.e., the last em-

bedding layer) but also important spatial information that

is hidden in the network. We now discuss how to obtain

spatially-aware concepts from the network.

Attribute spatial representation. Spatial information

of an attribute is crucial for understanding what part of a

clothing item the attribute refers to. Motivated by [34],

we generate embedded attribute activation maps (EAAM),

which can localize the salient regions of attributes for an

image by a single forward pass with the trained network.

Given an image I, let qk(i, j) be the activation of unit

k in the last convolutional layer at location (i, j). Af-

ter the global average pooling (GAP) operation, fk =∑
i,j qk(i, j) is the k-th dimension feature of the image

representation f . For a given attribute a, the cosine dis-

tance d(x,Wa) between image embedding x and attribute

embedding W
a indicates the probability that attribute a is

present in this image. If we plug fk into the cosine distance

we obtain:

d(x,Wa) =
∑

m

W a
mxm =

∑

m

W a
m

∑

k

WIm,k
fk

=
∑

m

W a
m

∑

k

WIm,k

∑

i,j

qk(i, j)

=
∑

i,j

∑

m

W a
m

∑

k

WIm,k
qk(i, j)

(2)

where W a
m and WIm,k

are entries of the attribute embedding

W
a and image embedding matrix WI, respectively. Thus,

the embedded attribute activation map (EAAM) for attribute

a of image I can be defined as:

M
I
a(i, j) =

∑

m

W a
m

∑

k

WIm,k
qk(i, j) (3)
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Figure 4. Embedding attribute activation map for a given attribute.

The generated activation maps successfully highlight the discrim-

inative regions for the given attribute.

Since d(x,Wa) =
∑

i,j M
I
a(i, j), M

I
a(i, j) indicates how

likely the attribute appears at spatial location (i, j).

Figure 4 shows sample EAAMs of images. We can

see the activation maps indicate where the joint embedding

model looks to identify an attribute. Product images on

shopping websites usually have clean backgrounds and are

displayed in an aligned frontal view. Thus, for a particular

attribute a and its positive training set (i.e., images whose

product descriptions contain a) Pa, we average EAAMs for

all images in Pa to generate an activation map Aa. We refer

to it as the attribute activation map (AAM) of a:

Aa =
1

|Pa|

∑

I∈Pa

M
I
a (4)

Figure 5 shows AAMs of some attributes for the dress

category. From this figure, we can discover that for at-

tributes that have clear spatial information in a dress image,

their AAMs capture the spatial patterns. For example, belt

is most likely to occur in the middle part of dress images,

long-sleeve often occurs on two sides of dress images, and

off-shoulder is around the shoulder region of a dress. How-

ever, for some attributes whose locations are not certain for

different dress images, like floral, stripe, and colors, their

AAMs span almost the entire image.

Therefore, for each attribute in a clothing category, its

AAM can serve as a spatial representation. If two attributes

describe the similar spatial part of a clothing category, e.g.,

sleeveless and long-sleeve, or v-neck and mockneck, their

spatial information should also be similar.

Attribute semantic representation. Only using spatial

information is not sufficient for effective concept discovery,

especially for those attributes that do not have a discrim-

inative spatial representation. Thus, we train a skip-gram

model [18] on the descriptions of clothing products to ob-

tain the semantic representations (Word2vec vectors) for all

off-shoulder belt asymmetric long-sleeve floral stripe 

Figure 5. Attribute activation map for a given attribute of the dress

category. The most frequency locations an attribute corresponds

to in an image are highlighted.

concepts discovered by our method

dress

dress length: maxi, midi, mini

neckline: v, plunge, deep, high, scoop

shoulder: off-the-shoulder, one-shoulder, strapless, ...

top

decoration: lace, embellished, embroidered, beaded, ...

sleeve length: sleeveless, long-sleeve, short-sleeve, ...

sleeve shape: kimono, cap, dolman, bell, flutter, ...

pants

color: black, blue, multicolor, gray, white, green, ...

pant cut: straight-leg, slim-leg, tapered-leg, bootcut, ...

pattern: check, geometric, leopard, palm, abstract, ...

Table 1. Concept discovered by our method. Each row contains the

attributes belong to one concept. Ellipsis is used when the attribute

list is too long to show.

attributes in our dataset. We denote the semantic represen-

tation of attribute a as Ea.

Attribute clustering. Ideally, attributes belonging to the

same concept describe the same characteristic of a clothing

category; that means they should be both spatially consis-

tent and semantically similar. Thus, for an attribute a, by

simply flattening its spatial representation Aa and concate-

nating it with its semantic representation Ea, we can gener-

ate a feature vector:

Fa = [vec(Aa),Ea] (5)

where vec(·) is vectorization operation and we normalize

vec(Aa) and Ea to have unit norm before concatenation.

As a result, this attribute feature is aware of the spatial in-

formation of the attribute and can also capture its seman-

tic meaning. K-means clustering algorithm is then used to

cluster all the attributes into attribute groups, such that the

attributes within a group form a concept. Unlike [24], we do

not directly use visual similarity between attributes because

attributes describing the same characteristic might be visu-

ally dissimilar. For example, blue and red are both color

attributes, but they are visually very different.

Table 1 presents some concepts discovered by our

method for different categories. We find that the attributes

describing the same characteristic are grouped into one

cluster. For example, all attributes describing colors are

in one concept because they are very close in the semantic

embedding space (they are often the first word in product
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descriptions) and their AAMs do not provide much useful

information (the right two AAMs in Figure 5). Thus, the se-

mantic representations of those attributes dominate in this

case and place them in the same concept. Different kinds

of sleeves also form a concept, since their AAMs are very

similar (along with the two sides of dresses or tops) and

their word vectors are also close. We also observe that our

method can successfully group noisy (not visually percep-

tible) attributes together, because the semantic and spatial

information of these attributes is not discriminative. These

noisy clusters will be discovered by our method and not af-

fect the attribute-feedback, since customers will not provide

an attribute with low visualness for retrieval.

4.3. Concept Subspace Learning

The discovered concepts are further utilized to refine the

learned joint visual-semantic space, so that similarities be-

tween items can be measured by each individual concept

(e.g., color and neckline could result in different similari-

ties). This is crucial for cases when customers want to mod-

ify attributes to refine the search results or hope to browse

products based on a particular concept. Therefore, given the

concepts discovered by the attribute clustering process, we

further train a sub-network for each concept, constructing a

concept-specific subspace.

For a concept C = {a1, a2, ..., an} where ai is an at-

tribute in this concept, we build a fully-connected layer and

a softmax layer on top of the image embedding features to

classify the ai. The number of neurons in the softmax layer

is n + 1 (each attribute corresponds to one neuron with an

additional one for none-of-above). This network is trained

only on images with ai in their product descriptions plus a

small number of randomly sampled negative images. We

denote S
C(x) to be the softmax output of the sub-network

for concept C given the input image x.

After the subspace training stage, the concept subspace

features (hidden layer representations) are aware of the at-

tributes of this particular concept, and hence enable the sim-

ilarity measurement among images based only on this con-

cept. For example, a “blue maxi dress” is more similar to a

“blue mini dress” than a “red maxi dress” in the color sub-

space. However, a “red maxi dress” is closer to “blue maxi

dress” in dress length subspace. As a result, customers can

choose the desired similarity measure during online shop-

ping so they can better explore the clothing gallery.

4.4. Attribute­feedback Product Retrieval

Based on the discovered concepts and learned concept

subspaces, we leverage multimodal linguistic regularities

to help perform attribute-feedback product retrieval task.

Some example results can be found in Figure 7.

Given a retrieved image (“red sleeveless mini dress”,

for example), customers may want to change one attribute

of the image while keeping others fixed, say “I want this

dress to have long-sleeves”. As we already trained a visual-

semantic embedding (VSE), a baseline method would be

sorting database images based on their cosine distances with

the query image + query attribute (long-sleeve). In this way,

the retrieved images have a high score for the query attribute

and are similar to the query image at the same time. For

a query image xq and a query attribute wp, the attribute-

feedback retrieval task to find image xo is defined as:

xo = argmax
x

(xq +wp) · x (6)

However, one problem with this approach is that it retrieves

images which are closest to “red sleeveless long-sleeve mini

dress” instead of “red long-sleeve mini dress”. To overcome

this, we note that by providing a query attribute, customers

implicitly intend to remove an existing attribute (sleeveless

in this case) that describes the same characteristic of the

product as the query attribute. Since the attributes within

one discovered concept describe the same characteristic, we

detect the implicit negative attribute wn and use it to search

image xo:

wn = argmax
w∈C

S
C(xq)

xo = argmax
x

(xq +wp −wn) · x
(7)

where C is the concept to which wp belongs and S
C(xq)

is the softmax output of the sub-network for C. Thus, wn

is the attribute in C that is most likely to be present in the

query image xq. By subtracting the detected negative at-

tribute wn from the query embedding, we remove the neg-

ative attribute to avoid two visually contradictory attributes

(e.g., sleeveless and long-sleeve) hurting the retrieval per-

formance. Eqn. 7 indicates that our method actually uses

multimodal linguistic regularities [10] with automatic neg-

ative attribute detection.

Because the subspace networks are trained with a none-

of-above class, it might predict that xq does not have any

attributes in concept C. In this case, our method degener-

ates to the baseline method.

5. Experimental Results and Discussions

5.1. Experiment Setup

Clothing detection. Some works have shown that us-

ing detected clothing segmentations instead of entire im-

ages can achieve better performance in various tasks [6, 8],

so we also train a detector for each clothing category using

MultiBox model [25] to detect and crop clothing items in

our dataset. Because the product images on shopping web-

sites have clean backgrounds, the detectors work very well.

Visual-semantic embedding. We use GoogleNet Incep-

tionV3 model [26] for the image CNN. Its global average

1468



1 10 20 30 40 50

Number of retrieved images

0.05

0.09

0.13

0.17

0.21

0.25

0.29

0.33

0.37

0.41

R
e
tr

ie
v
a
l 
a
cc

u
ra

cy

VSE (w/o Concept Discovery)

ACD [22]

Word2vec [17] (semantic only)

AAM (spatial only)

Ours Joint (semantic + spatial)

(a) dress

1 10 20 30 40 50

Number of retrieved images

0.05

0.08

0.11

0.14

0.17

0.2

0.23

0.26

0.29

0.32

R
e
tr

ie
v
a
l 
a
cc

u
ra

cy

VSE (w/o Concept Discovery)

ACD [22]

Word2vec [17] (semantic only)

AAM (spatial only)

Ours Joint (semantic + spatial)

(b) top

1 10 20 30 40 50

Number of retrieved images

0.05

0.09

0.13

0.17

0.21

0.25

0.29

0.33

0.37

0.41

R
e
tr

ie
v
a
l 
a
cc

u
ra

cy

VSE (w/o Concept Discovery)

ACD [22]

Word2vec [17] (semantic only)

AAM (spatial only)

Ours Joint (semantic + spatial)

(c) pants

1 10 20 30 40 50

Number of retrieved images

0.05

0.09

0.13

0.17

0.21

0.25

0.29

0.33

0.37

0.41

R
e
tr

ie
v
a
l 
a
cc

u
ra

cy

VSE (w/o Concept Discovery)

ACD [22]

Word2vec [17] (semantic only)

AAM (spatial only)

Ours Joint (semantic + spatial)

(d) skirt

1 10 20 30 40 50

Number of retrieved images

0.05

0.09

0.13

0.17

0.21

0.25

0.29

0.33

0.37

0.41

R
e
tr

ie
v
a
l 
a
cc

u
ra

cy

VSE (w/o Concept Discovery)

ACD [22]

Word2vec [17] (semantic only)

AAM (spatial only)

Ours Joint (semantic + spatial)

(e) jacket

Figure 6. Top-k retrieval accuracy of different methods for attribute-feedback product retrieval for dresses, tops, pants, skirt, and jacket.

pooling (GAP) layer after the last convolutional layer en-

ables us to directly use it without changing the structure of

the network as in [34]. We use the 2048D features right af-

ter GAP as the image features. The dimension of the joint

embedding space is set to 512, thus WI is a 2048×512 ma-

trix, and WT is an M×512 matrix, where M is the number

of attributes. We set the margin m = 0.2 in Eqn. 1. The

initial learning rate is 0.05 and is decayed by a factor of 2

after every 8 epochs. The batch size is set to 32. Finally, we

fine-tune all layers of the network pretrained on ImageNet.

Spatiallly-aware concept discovery. The feature map

size of the last convolutional layer in the InceptionV3 model

is 8× 8× 2048, hence the attribute activation map is of size

8 × 8. After vectorizing the activation map, an attribute

will have a 64D feature vector as its spatial representation.

We also set the dimension of word vectors to 64 to have

the same dimentionality when training the Word2vec[18]

model. The number of clusters is fixed to 50 for clustering.

Subspace feature learning. We set the hidden layer of

each concept subspace to have 128 neurons. The learning

rate is fixed to be 0.1 and we stop training after 10 epochs.

Note that during training subspace networks, the visual-

semantic embedding weights are fixed, only the parameters

after the image embedding layer are updated.

5.2. Evaluation of Discovered Concepts

To evaluate the quality of our discovered concepts, a

fashion professional manually assigned around 300 at-

tributes into different categories (e.g., color, pattern, neck-

line, sleeve, etc.). We use this information as ground truth

concept assignments of the attributes and compare our ap-

proach with the following methods: Automatic Concept

Discovery (ACD) [24], only using semantic representations

of attributes for clustering (Word2vec[18]) and only using

spatial information (Our AAM). In all methods, we set the

number of clusters to 50. Homogeneity, completeness and

V-measure [19] are used to evaluate the clustering quality.

Results are shown in Table 2. Only using semantic in-

formation gives reasonable results. However, just relying

on spatial information performs worst, since for many at-

tributes, their spatial information is not discriminative and

thus fails to discover informative concepts. ACD performs

similarly to Word2vec because it combines semantic and

visual similarities of attributes but visually dissimilar at-

Homogeneity Completeness V-measure

ACD [24] 0.770 0.527 0.626

Word2vec 0.765 0.534 0.629

Ours AAM 0.680 0.447 0.540

Ours Joint 0.794 0.561 0.658

Table 2. Comparison among concept discovery methods. Homo-

geneity, completeness and V-measure [19] are between 0 and 1,

higher is better.

tributes may also describe the same characteristic. By

jointly clustering the semantic and spatial representations

of attributes, our concept discovery approach outperforms

other methods by 0.03 in V-measure.

5.3. Attribute­feedback Product Retrieval

To evaluate how the discovered concepts help attribute-

feedback product retrieval, we collected 3,167 product pairs

from the test set. The two products in each pair have

one attribute that differs in their product descriptions, e.g.,

“blue geometric long-sleeve shirt” vs. “blue paisley long-

sleeve shirt”, “blue off-shoulder floral dress” vs. “blue one-

shoulder floral dress”, etc. In each pair, we use the image of

one product and the differing attribute in their descriptions

as the query to retrieve the images of the other product. Top-

k retrieval accuracy is used for evaluation.

As shown in Figure 6, we compare our full method for

all five categories with other methods. We also include the

baseline method (VSE w/o concept discovery as in Eqn. 6),

where no negative attribute is used.

We can see that using only attribute activation maps

(AAM) significantly reduces performance of retrieval due

to lack of semantic information. Only using semantic infor-

mation (Word2vec) helps for most categories, but is worse

than the baseline when retrieving tops. By adding visual

information, ACD performs slightly worse than Word2vec

because the visual similarity of attributes is not suitable

for discovering concepts. After combining both semantic

and spatial information, our concept discovery approach

achieves the highest retrieval accuracy for all five cate-

gories, especially for the categories top, dress and jacket

whose attributes have strong spatial information (e.g., collar

shape, sleeve length, sleeve shape). However, for clothing

items like pants, whose attributes do not present informative

spatial cues, our method only yields a marginal improve-

ment over Word2vec.

1469



+ strapless =
(- one-shoulder) 

+ pink =
(- purple) 

+ cap-sleeve =
(- sleeveless) 

Figure 7. Examples of our attribute-feedback product retrieval re-

sults. Sleeve type changes from sleeveless to cap-sleeve in the first

example, and shoulder changes from one-shoulder to strapless in

the third example, according to customer feedback attributes. The

attributes in parentheses are the negative attributes automatically

detected by our method.

Dress length decreases

Maxi dress

Mini dress

Midi dress

Figure 8. Subspace embedding corresponding to concept {maxi,

midi, mini} for dresses. Images are mapped to a grid for better

visualization.

Figure 7 illustrates some examples which show that our

retrieval model can accurately detect the negative attribute

and give satisfying results with the desired attributes added

to the original results.

5.4. Structured Browsing of Products

Figure 8,9 use t-SNE [17] to visualize two subspace em-

beddings based on two discovered concepts. In Figure 8,

the subspace network is trained to distinguish {maxi, midi,

mini} for dresses, and it learns a continuous representation

of the length of dresses - dress length decreases from left to

right on the 2D visualization plane. Figure 9 illustrates the

embedding corresponding to the attributes describing colors

for tops. Tops with different colors are well separated in the

embedding subspace. Although Veit et al. [29] also learns

concept subspaces based on an attention mechanism, they

heavily rely on richly annotated data, while our method is

fully automatic and annotation free.

White top

Red top

Black top 

Blue top

Figure 9. Subspace embedding corresponding to concept {black,

blue, white, red, gray, green, purple, beige, ...} for tops.

By training a subspace embedding for each discovered

concept, we can project images into the appropriate sub-

space and explore the images according to this specific con-

cept, while a general embedding (like the visual-semantic

embedding) cannot automatically adjust its representations

based on user-specified characteristics.

Thus, the subspace features enable structured browsing

during online shopping. For example, when a customer

finds a mini dress and wants to see other dresses that share

similar length with this dress, she may choose the subspace

of {maxi, midi, mini}, so she can find the other mini dresses

near her initial choice and as she explores the left side of the

subspace, she can find dresses with longer length.

We should note that it is also possible to concatenate sub-

space embeddings of two concepts, hence clothing items

sharing the same characteristics according to two concepts

will be close in the concatenated subspace.

6. Conclusion

We automatically discover spatially-aware concepts with

clothing images and their product descriptions. By project-

ing images and their attributes into a joint visual-semantic

embedding space, we are able to learn attribute spatial rep-

resentations. We then combine spatial representations and

semantic representations of attributes, and cluster attributes

into spatially-aware concepts, such that the attributes in one

concept describe the same characteristic. Finally, a sub-

space embedding is trained for each concept to capture the

concept-specific information. Experiments on clustering

quality evaluation and attribute-feedback product retrieval

for five clothing categories show the effectiveness of the dis-

covered concepts and the learned subspace features.
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