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Abstract

Rich and dense human labeled datasets are among the

main enabling factors for the recent advance on vision-

language understanding. Many seemingly distant annota-

tions (e.g., semantic segmentation and visual question an-

swering (VQA)) are inherently connected in that they reveal

different levels and perspectives of human understandings

about the same visual scenes — and even the same set of

images (e.g., of COCO). The popularity of COCO corre-

lates those annotations and tasks. Explicitly linking them

up may significantly benefit both individual tasks and the

unified vision and language modeling.

We present the preliminary work of linking the instance

segmentations provided by COCO to the questions and an-

swers (QAs) in the VQA dataset, and name the collected

links visual questions and segmentation answers (VQS).

They transfer human supervision between the previously

separate tasks, offer more effective leverage to existing

problems, and also open the door for new research prob-

lems and models. We study two applications of the VQS

data in this paper: supervised attention for VQA and a

novel question-focused semantic segmentation task. For the

former, we obtain state-of-the-art results on the VQA real

multiple-choice task by simply augmenting the multilayer

perceptrons with some attention features that are learned

using the segmentation-QA links as explicit supervision. To

put the latter in perspective, we study two plausible meth-

ods and compare them to an oracle method assuming that

the instance segmentations are given at the test stage.

1. Introduction

Connecting visual understanding with natural language

has received extensive attentions in recent years. We have

witnessed the resurgence of image captioning [41, 28, 18,

6, 39, 4, 46, 12, 32, 10] which is often addressed by jointly

modeling visual and textual content with deep neural net-

works. However, image captions tend to be diverse and sub-

Code and data: https://github.com/Cold-Winter/vqs.

What time is it? Is the street empty?

How many buses have only a single level?

Is he wearing a tie?

What is next to the dog?

Figure 1. Taking as input an image and a question about the image,

an algorithm for the question-focused semantic segmentation is

desired to generate some segmentation mask(s) over the entities in

the image that can visually answer the question.

jective — it is hard to evaluate the quality of captions gen-

erated by different algorithms [7, 40, 1], and tend to miss

subtle details — in training, the models may be led to cap-

turing the scene-level gist rather than fine-grained entities.

In light of the premises and demerits of image captioning,

visual question answering (VQA) [3, 50, 35, 13] and vi-

sual grounding [34, 15, 36, 27, 16, 42, 49] are proposed, in

parallel, to accommodate automatic evaluation and multi-

ple levels of focus on the visual entities (e.g., scene, object,

activity, attribute, context, relationships, etc.).

Rich and dense human annotated datasets are arguably

the main “enabler”, among others, for this line of excit-

ing works on vision-language understanding. COCO [24]

is especially noticeable among them. It contains mainly

classical labels (e.g., segmentations, object categories and

instances, key points, etc.) and image captions. Many re-

search groups have then collected additional labels of the

COCO images for a variety of tasks. Agrawal et al. crowd-

sourced questions and answers (QAs) about a subset of the

COCO images and abstract scenes [3]. Zhu et al. collected

seven types of QAs in which the object mentions are as-
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sociated with bounding boxes in the images [50]. Mao et

al. [27] and Yu et al. [49] have users to give referring ex-

pressions that each pinpoints a unique object in an image.

The Visual Genome dataset [21] also intersects with COCO

in terms of images and provides dense human annotations,

especially scene graphs.

These seemingly distant annotations are inherently con-

nected in the sense that they reveal different perspectives of

human understandings about the same COCO images. The

popularity of COCO could strongly correlate those annota-

tions — and even tasks. Explicitly linking them up, as we

envision, can significantly benefit both individual tasks and

unified vision-language understanding, as well as the corre-

sponding approaches and models. One of our contributions

in this paper is to initiate the preliminary work on this. In

particular, we focus on linking the segmentations provided

by COCO [24] to the QAs in the VQA dataset [3]. Dis-

playing an image and a QA pair about the image, we ask

the participant to choose the segmentation(s) of the image

in order to visually answer the question.

Figure 1 illustrates some of the collected “visual an-

swers”. For the question “What is next to the dog?”, the

output is supposed to be the segmentation mask over the

man. For the question “What time is it?”, the clock should

be segmented out. Another intriguing example is that the

cars are the desired segmentations to answer “Is this street

empty?”, providing essential visual evidence for the simple

text answer “no”. Note that while many visual entities could

be mentioned in a question, we only ask the participants to

choose the target segmentation(s) that visually answer the

question. This simplifies the annotation task and results in

higher agreement between participants. Section 2 details

the annotation collection process and statistics.

Two related datasets. Das et al. have collected some hu-

man attention maps for the VQA task [5]. They blur the

images and then ask users to scratch them to seek visual

cues that help answer the questions. The obtained atten-

tion maps are often small, revealing meaningful parts rather

than complete objects. The object parts are also mixed with

background areas and with each other. As a result, the hu-

man attention maps are likely less accurate supervision for

the attention based approaches to VQA than the links we

built between segmentations and QAs. Our experiments

verify this hypothesis (cf. Section 3). While bounding boxes

are provided in Visual7W [50] for object mentions in QAs,

they do not serve for the purpose of directly answering the

questions except for the “pointing” type of questions. In

contrast, we provide direct visual answers in the form of

segmentations to more question types.

1.1. Applications of the segmentation­QA links

We call the collected links between the COCO segmenta-

tions [24] and QA pairs in the VQA dataset [3] visual ques-

tions and segmentation answers (VQS). Such links transfer

human supervision between the previously separate tasks,

i.e., semantic segmentation and VQA. They enable us to

tackle existing problems with more effective leverage than

before and also open the door for new research problems

and models for the vision-language understanding. We

study two applications of our VQS dataset in this paper: su-

pervised attention for VQA and a novel question-focused

semantic segmentation (QFSS) task. For the former, we

obtain state-of-the-art results on the VQA real multiple-

choice task by simply augmenting the multilayer percep-

trons (MLP) of [17] with attention features.

1.1.1 Supervised attention for VQA

VQA is designed to answer natural language questions

about images in the form of short texts. The attention

scheme is often found useful for VQA, by either attending

particular image regions [47, 45, 44, 25, 23] or modeling

object relationships [2, 26]. However, lacking explicit at-

tention annotations, the existing methods opt for latent vari-

ables and use indirect cues (e.g., text answers) for infer-

ence. As a result, the machine-generated attention maps are

poorly correlated with human attention maps [5]. This is

not surprising since latent variables hardly match semantic

interpretations due to the lack of explicit training signals;

similar observations exist in other studies, e.g., object de-

tection [8], video recognition [11] and text processing [48].

These phenomena highlight the need for explicit links

between the visual and text answers, realized in this work

as VQS. We show that, by supervised learning to attend

different image regions using the collected segmentation-

QA links, we can boost the simple MLP model [17] to very

compelling performance on the VQA real multi-choice task.

1.1.2 Question-focused semantic segmentation (QFSS)

In addition to the supervised attention for better tackling

VQA, VQS also enables us to explore a novel question-

focused semantic segmentation (QFSS) task.

Since VQA desires only text answers, there exist po-

tential shortcuts for the learning agent, e.g., to generate

correct answers without accurately reasoning the locations

and relations of different visual entities. While visual

grounding (VG) avoids the caveat by placing bounding

boxes [34, 36, 27, 16] or segmentations [15] over the target

visual entities, the scope of the text expressions in existing

VG works is often limited to the visual entities present in

the image. In order to bring together the best of VQA and

VG, we propose the QFSS task, whose objective is to pro-

duce pixel-wise segmentations in order to visually answer

the questions about images. It effectively borrows the ver-

satile questions from VQA and meanwhile resembles the

design of VG in terms of the pixel-wise segmentations as

the desired output.
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(a) Is there broccoli in the dish? (j) What is the person doing? (m) What sex of person holding remote?

(b) What color is the coffee cup?

(f) How many person wear hats?

(e) How many cows are standing up?

(d) How many computer keyboards? 

(i) What shape is the bottom pizza?

(h) Which horse is closer to the camera?

(c) Is the woman wearing ring?

(k) Is the man riding bike?

(l) What sport is played?

(g) What is on the bench next to woman?

(n) What time is it?

(o) What fast food restaurant can be seen?

Figure 2. Some typical examples in our VQS dataset. From the left to right, the underlying tasks are respectively about object localization,

semantic segmentation, understanding object relationships, fine-grained activity localization, and commonsense reasoning.

Given an image and a question about the image, we pro-

pose a mask aggregation approach to generating a segmen-

tation mask as the visual answer. Since QFSS is a new task,

to put it in perspective, we not only compare the proposed

approach to competing baselines but also study an upper-

bound method by assuming all instance segmentations are

given as oracles at the test stage.

Hu et al.’s work [15] is the most related to QFSS. They

learn to ground text expressions in the form of image seg-

mentations. Unlike the questions used in this work that are

flexible to incorporate commonsense and knowledge bases,

the expressive scope of the text phrases in [15] is often lim-

ited to the visual entities in the associated images.

The rest of this paper is organized as follows. Sec-

tion 2 details the collection process and analyses of our

VQS data. In section 3, we show how to use the collected

segmentation-QA links to learn supervised attention fea-

tures and to augement the existing VQA methods. In sec-

tion 3.2, we study a few potential frameworks to address

the new question-focused semantic segmentation task. Sec-

tion 4 concludes the paper.

2. Linking image segmentations to text QAs

In this section, we describe in detail how we collect the

links between the semantic image segmentations and text

questions and answers (QAs). We build our work upon the

images and instance segmentation masks in COCO [24] and

the QAs in the VQA dataset [3]. The COCO images are

mainly about everyday scenes that contain common objects

in their natural contexts, accommodating complex interac-

tions and relationships between different visual entities. To

avoid trivial links between the segmentations and QA pairs,

we only keep the images that contain at least three instance

segmentations in this work. The questions in VQA [3] are

diverse and comprehensively cover various parts of an im-

age, different levels of semantic interpretations, as well as

commonsense and knowledge bases.

Next, we elaborate the annotation instructions and pro-

vide some analyses about the collected dataset.

2.1. Annotation instructions

We display to the annotators an image, its instance seg-

mentations from the COCO dataset, and a QA pair about the

image from the VQA dataset. The textual answer is given

in addition to the question, to facilitate the participants to

choose the right segmentations as the visual answer. Here

are the instructions we give to the annotators (cf. the sup-

plementary materials for the GUI):

• Please choose the right segmentation(s) in the image

to answer the question. Note that the text answer is

shown after the question.

• A question about the target entities may use other enti-

ties to help refer to the target. Choose the target entities

only and nothing else (e.g., the purse for “What is on

the bench next to woman?” in Figure 2(g)).

• A question may be about an activity. Choose all visual

entities involved in the activity. Taking Figure 2(j) for

instance, choose both the person and motorcycle for

the question “what is the person doing?”.

• Sometimes, in addition to the image regions covered

by the segmentation masks, you may need other re-

gions to answer the question. To include them, please
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Figure 3. Distribution of the number of segmentations per

question-image pair.

draw tight bounding box(es) over the region(s).

• For the “How many” type of questions, the number of

selected segments (plus bounding boxes) must match

the answer. If the answer is greater than three, it is

fine to put one bounding box around the entities being

asked in the question.

• Please tick the black button under the question, if you

think the question has to be answered by the full image.

• Please tick the gray button under the question, if you

feel the question is ambiguous, or if you are not sure

which segment/region to select to answer the question.

Occasionally, the visual answer is supposed to be only

part of an instance segment given by COCO. For instance,

the McDonald logo answers “What fast food restaurant can

be seen?” in Figure 2(o) but there is no corresponding seg-

mentation for the logo in COCO. Another example is the re-

gion of the ring that answers “Is the woman wearing ring?”

(cf. Figure 2(c)). For these cases, we ask the participants

to draw tight bounding boxes around them. If we segment

them out instead, a learning agent for QFSS may never be

able to produce the right segmentation for them unless we

include more training images in the future, since these re-

gions (e.g., McDonald logo, ring) are very fine-grained vi-

sual entities and show up only a few times in our data col-

lection process.

Quality control. We tried AMTurk to collect the annota-

tions at the beginning. While the inter-annotator agreement

is high on the questions about objects and people, there

are many inconsistent annotations for the questions refer-

ring to activities (e.g., “What sport is played?”). Besides,

the AMTurk workers tend to frequently tick the black but-

ton, which says the full image is the visual answer, and the

gray button, which tells the question is ambiguous. To ob-

tain higher-quality annotations, we instead invited 10 under-

graduate and graduate volunteers and trained them in person

(we include some slides used for the training in the supple-

mentary materials). To further control the annotation qual-

ity, each annotator was asked to finish an assignment of 100

images (around 300 question-answer pairs) before we met

with them again to look over their annotations together —

does/do

how many

is/are

otherwhat color

what is

what others

where

which who why

4%

12%

29%

4%11%

16%

19%

2%

1%
1% 1%

Figure 4. The distribution of question types in the VQS dataset.

all the volunteers were asked to participate the discussion

and jointly decide the expected annotations for every ques-

tion. We also gradually increased the hourly payment rate

from $12/hr to $14/hr as incentives for high-quality work.

2.2. Tasks addressed by the participants

Thanks to the rich set of questions collected by Agrawal

et al. [3] and the complex visual scenes in COCO [24], the

participants have to parse the question, understand the vi-

sual scene and context, infer the interactions between visual

entities, and then pick up the segmentations that answer the

questions. We find that many vision tasks may play roles

in this process. Figure 2 shows some typical examples to

facilitate the following discussion.

Object detection. Many questions directly ask about the

properties of some objects in the images. In Figure 2(b), the

participants are supposed to identify the cup in the cluttered

scene for the question “What color is the coffee cup?”.

Semantic segmentation. For some questions, the visual

evidence to answers is best represented by semantic seg-

mentations. Take Figures 2(j) and (k) for instance. Simply

detecting the rider and/or the bike would be inadequate in

expressing their spatial interactions.

Spatial relationship reasoning. A question like “What

is on the bench next to the woman?” (Figure 2(g)) poses a

challenge to the participants through the spatial relationship

between objects including bench, woman, and the answer

purse. Figure 2(i) is another example in this realm.

Fine-grained activity recognition. When the question

is about an activity (e.g., “What sport is being played?”

in Figure 2(l)), we ask the participants to label all the vi-

sual entities (e.g., person, tennis racket , and tennis ball)

involved. In other words, they are expected to spot the fine-

grained details of the activity.

Commonsense reasoning. Commonsense knowledge

can help the participants significantly reduce the search

space for the visual answers, e.g., the clock to answer “What

time is it?” in Figure 1, and the McDonald logo to answer

“What fast food restaurant can be seen?” in Figure 2(o).
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Figure 5. Supervised attention for VQA. To learn the attention features for each question-image pair, we use the corresponding segmentation

mask as supervision to train the attention network. After that, we augment the MLP model [17] by the attention features.

2.3. Data statistics

After collecting the annotations, we remove the

question-image pairs for which the users selected the black

buttons (full image) or gray buttons (unknown) to avoid triv-

ial and ambiguous segmentation-QA links, respectively. In

total, we keep 37,868 images, 96,508 questions, 108,537

instance segmentations, and 43,725 bounding boxes. In the

following, we do not differentiate the segmentations from

the bounding boxes for the ease of presentation and also for

the sake that the bounding boxes are tight, small, and much

fewer than the segmentations.

Figure 3 counts the distribution of the possible number

of instance segmentations selected per image in response to

a question. Over 70% of questions are answered by one

segmentation. On average, each question-image pair has

6.7 candidate segmentations, among which 1.6 are selected

by the annotators as the visual answers.

In Figure 4, we visualize the distribution of question

types. The most popular type is the “What” questions

(46%). There are 31,135 “is/are” and “does/do” questions

(32.1%). Note that although the textual answers to them

are simply yes or no, in VQS, we ask the participants to

explicitly demonstrate their understanding about the visual

content by producing the semantic segmentation masks. In

the third column of Table 3, we show the average number of

segmentations chosen by the users out of the average num-

ber of candidates for each of the question types.

3. Applications of VQS

The user linked visual questions and segmentations,

where the latter visually answers the former, are quite ver-

satile. They offer better leverage than before for at least two

problems, i.e., supervised attention for VQA and question-

focused semantic segmentation (QFSS).

3.1. Supervised attention for VQA

VQA is designed to answer natural language questions

about an image in the form of short texts. We conjecture

that a learning agent can produce more accurate text an-

swers given the privileged access to the segmentations that

are user linked to the QAs in training. To verify this point,

we design a simple experiment to augment the MLP model

in [17]. The augmented MLP significantly improves upon

the plain version and gives rise to state-of-the-art results on

the VQA real multiple-choice task [3].

Experiment setup. We conduct experiments on the VQA

Real Multiple Choices [3]. The dataset contains 248,349

questions for training, 121,512 for validation, and 244,302

for testing. Each question has 18 candidate answer choices

and the learning agent is required to figure out the correct

answer among them. We evaluate our results following the

metric suggested in [3].

MLP for VQA Multiple Choice. Since the VQA

multiple-choice task supplies candidate answers to each

question, Jabri et al. propose to transform the problem to a

stack of binary classification problems [17] and solve them

by the multilayer perceptrons (MLP) model:

y = σ(W2 max(0,W1xiqa) + b) (1)

where xiqa is the concatenation of the feature representa-

tions of an image, a question about the image, and a candi-

date answer, and σ(·) is the sigmoid function. The hidden

layer has 8,096 units and a ReLU activation. This model is

very competitive, albeit simple.

3.1.1 Augmenting MLP by supervised attention

We propose to augment the MLP model by richer feature

representations of the questions, answers, images, and es-
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Table 1. Comparison results on both VQA TestDev and Standard

for the Real Multiple Choice task.

Method Dev Standard

Two-layer LSTM [3] 62.7 63.1

Region selection [37] 62.4 62.4

DPPNet [31] 62.5 62.7

MCB [9] 65.4 −
Co-Attention [25] 65.9 66.1

MRN [19] 66.3 66.3

MLB [20] − 68.9

MLP + ResNet [17] 67.4 −
MLP + ResNet +Atten. 68.9 −

MLP + Attri. 68.4 −
MLP + Attri. + Atten. 69.5 69.8

10 ensemble models 70.5 70.5

pecially by the supervised attention features detailed below.

Question and answer features xq&xa. For a ques-

tion or answer, we represent it by averaging the 300D

word2vec [29] vectors of the constituent words, followed

by the l2 normalization. This is the same as in [17].

Image features xi. We extract two types of features from

an input image: ResNet [14] pool5 activation and attribute

features [43], where the latter is the attribute detection

scores. We implement an attribute detector by revising the

output layer of ResNet. Particularly, given C = 256 at-

tributes, we impose a sigmoid function for each attribute

and then train the network using the binary cross-entropy

loss. The training data is obtained from the COCO image

captions [24]. We keep the most frequent 256 words as the

attributes after removing the stop words.

Attention features xatt. We further concatenate attention

features xatt to the original input xiqa. The attention fea-

tures are motivated by the weighted combination of image

regional features and question features in [47, eq. (22)],

where the the non-negative weight pi = f(Q, {ri}) for

each image region is a function of the question Q and re-

gional features {ri}. We borrow the network architecture

as well as code implementation from Yang et al. [47, Sec-

tion 3.3] for this function, except that we train this network

by a cross-entropy loss to match the weights {pi} to the

“groundtruth” attentions derived from the segmentations in

our VQS dataset. In particular, we down-sample the seg-

mentation map associated with each question-image pair to

the same size as the number of image regions, and then l1
normalize it to a valid probability distribution. By training

the network to match the weights pi = f(Q, {ri}) toward

such attentions, we enforce larger weights for the regions

that correspond to the user selected segmentations.

The upper panel of Figure 5 illustrates the process of ex-

tracting the attention features, and the bottom panel shows

the MLP model [17] augmented with our attention features

for the VQA real multiple-choice task.

Table 2. Comparison results on VQA TestDev Real Multiple

Choice task.
Method Y/N Num. Others All

Plain MLP [17] 80.11 38.88 64.17 67.49

HAT [5] 80.19 39.34 64.92 68.42

Bounding boxes 80.15 38.9 65.54 68.65

VQS 80.60 39.41 65.73 68.94

3.1.2 Experimental results

Table 1 reports the comparison results of the attention fea-

tures augmented MLP with several state-of-the-art methods

on the VQA real multiple-choice task. We mainly use the

Test Dev for comparison. After determining our best single

and ensemble models, we also submit them to the evalua-

tion server to acquire the results on Test Standard.

First of all, we note that there is an 1.5% absolute im-

provement over the plain MLP model (MLP + ResNet) by

simply augmenting it using the learned attention features

(MLP + ResNet + Atten.). Second, the attribute features

for the images are actually quite effective. We gain 1.0%

improvement over the plain MLP by replacing the ResNet

image features with the attribute features (cf. the row of

MLP + Attri. vs. MLP + ResNet). Nonetheless, by append-

ing attention features to MLP + Attri., we can still observe

1.1% absolute gain. Finally, with an ensemble of five MLP

+ ResNet + Atten. models and five MLP + Attri. + Atten.

models, our submission to the evaluation server was ranked

to the second on Test Standard for the VQA real multiple-

choice task, as of the paper submission date.

3.1.3 What is good supervision for attention in VQA?

In this section, we contrast the VQS data to the human at-

tention maps (HAT) [5] and bounding boxes that are placed

tightly around the segmentations in VQS. The comparison

results, reported in Table 2, are evaluated on the TestDev

dataset of VQA Real Multiple Choice. We can see that the

segmentaitons linked to QAs give rise to a little better re-

sults than bounding boxes, which further outperform HAT.

These confirm our conjecture that HAT might be suboptimal

for the supervised learning of attentions in VQA, since they

reveal usually small parts of objects and contain large pro-

portions of background. However, we believe it remains in-

teresting to examine VQS for more generic attention-based

VQA models [47, 45, 44, 25, 23, 2, 26].

In the supplementary materials, we describe the de-

tailed implementation for the ensemble model. We also

present additional results studying how different resolutions

of the segmentation masks influence the VQA results.

3.2. Question­focused semantic segmentation

This section explores a new task, question-focused se-

mantic segmentation (QFSS), which is feasible thanks to

the collected VQS that connects two previously separate

tasks (i.e., segmentations and VQA). Given a question about
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Figure 7. Our DeconvNet baseline for QFSS.

an image, QFSS expects the learning agent to output a vi-

sual answer by semantically segment the right visual enti-

ties out of the image. It is designed in a way similarly to the

segmentation from natural language expressions [15], with

possible applications to robot vision, photo editing, etc.

In order to put the new task in perspective, we propose a

mask aggregation approach to QFSS, study a baseline, and

also investigate an upper bound method by assuming all in-

stance segmentations are given as oracles at the test stage.

3.2.1 Mask aggregation for QFSS

We propose a mask aggregation approach to tackling QFSS.

The modeling hypothesis is that the desired output segmen-

tation mask can be composed from high-quality segmenta-

tion proposals. In particular, we use N = 25 segmenta-

tion proposals e1, e2, · · · , eN generated by SharpMask [33]

given an image. Each proposal is a binary segmentation

mask of the same size as the image.

We then threshold a convex combination of these masks

E =
∑

i siei as the final output in response to a question-

image pair, where the i-th combination coefficient si is de-

termined by the question features xq and the representa-

tions zi of the i-th segmentation proposal through a soft-

max function, i.e., si = softmax(xT
q Azi). We learn the

model parameters A by minimizing an l2 loss between the

the user selected segmentations E⋆ and the model generated

segmentation mask E. Our current model is “shallow” but it

is straightforward to make it deep, e.g., by stacking its out-

put with the original input following the prior practice (e.g.,

memory network [44] and stacked attention network [47]).

An oracle upper bound. We devise an upper bound to

the proposed method by 1) replacing the segmentation pro-

posals with all the instance segmentations released by MS

 How many animals are in the picture?

What sport is this?

Is this a passenger train?

Input Inage Ground truthAggregation Deconvoulution

Figure 8. Qualitative results of mask aggregation and DeconvNet.

COCO, assuming they are available as oracles at testing,

and 2) using a binary classifier to determine whether or not

an instance segmentation should be included into the visual

answer. The results can be considered an upper bound for

our approach because the segmentations are certainly more

accurate than the machine generated proposals, and the bi-

nary classification is arguably easier to solve than aggre-

gating multiple masks. We re-train the MLP (eq. 1) for the

binary classifier here; it now takes as input the concatenated

features of a segmentation and a question.

Figure 6 depicts the proposed approach and the upper-

bound method with a concrete question-image example.

A baseline using deconvolutional network. Finally, we

study a competitive baseline which is motivated by the text-

conditioned FCN [15]. As Figure 7 shows, it contains three

components, a convolutional neural network (CNN) [22],

a deconvolutional neural network (DeconvNet) [30], and a

question embedding to attend the feature maps in CNN. All

the images are resized to 224 × 224. The convolutional

and deconvolutional nets follow the specifications in [30].

Namely, a VGG-16 [38] is trimmed till the last convolu-

tional layer, followed by two fully connected layers, and

then mirrored by DeconvNet. For the input question, we

use an embedding matrix to map it to the same size as the

feature map of the last convolutional layer. The question

embedding is then element-wsie multiplied with the feature

map. We train the network with an l2 loss between the out-

put mask and the groundtruth segmentation mask.
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Table 3. Comparison results on QFSS (evaluated by IOU, the higher the better). For the question representations, we consider the bag-of-

words features (B) and the word embedding based features (W).

Type Num. #seg ans/candts Aggre. (B) Aggre. (W) DeconvNet (B) DeconvNet (W) Upper

All 14875 1.6/6.1 0.3256 0.3174 0.2687 0.2979 0.5709

does/do 561 1.6/6.0 0.3294 0.3321 0.2751 0.3297 0.5346

how many 1814 2.2/6.3 0.3697 0.3645 0.3147 0.3370 0.6394

is/are 4238 1.7/5.9 0.3672 0.3573 0.3061 0.3548 0.6169

what color 1631 1.1/6.0 0.2596 0.2568 0.1940 0.1677 0.5557

what is 2464 1.3/5.9 0.2472 0.2328 0.2030 0.2003 0.4987

what (other) 2722 1.6/6.1 0.3332 0.3235 0.2556 0.2809 0.5482

where 433 1.4/6.2 0.1996 0.2040 0.1716 0.1896 0.5707

which 202 1.4/5.9 0.2419 0.2339 0.1695 0.2012 0.4504

who 144 1.3/5.9 0.2573 0.2527 0.2004 0.2164 0.2912

why 124 1.9/6.3 0.3453 0.3594 0.2430 0.2917 0.4781

others 542 1.6/6.1 0.3578 0.3354 0.3097 0.3534 0.5267

3.2.2 Experiments on QFSS

Features. In addition to representing the questions using

the word embedding features xq as in Section 3.1.1, we also

test the bag-of-words features. For each instance segmen-

tation or proposal, we mask out all the other pixels in the

image with 0’s and then extract its features from the last

pooling layer of a ResNet-152 [14].

Dataset Split. The SharpMask we use is learned from the

training set of MS COCO. Hence, we split our VQS data in

such a way that our test set does not intersect with the train-

ing set for SharpMask. Particularly, we use 26,995 images

and correspondingly 68,509 questions as our training set.

We split the remaining images and questions to two parts:

5,000 images and associated questions for validation, and

5,873 images with 14,875 questions as the test set.

Results. Table 3 reports the comparison results on QFSS,

evaluated by intersection-over-union (IOU). In addition, the

first three columns are about the number of different types

of questions and the average numbers of user selected seg-

mentations per question type. On average, more than one

segmentations are selected for any of the question types.

First of all, we note that the proposed mask aggregation

outperforms the baseline DeconvNet and yet is significantly

worse than its upper bound method. The mask aggrega-

tion is superior over DeconvNet partially because it has ac-

tually used extra supervised information beyond our VQS

data; namely, the SharpMask is trained using all the instance

segmentations in the training set of MS COCO. The upper

bound results indicate there is still large room for the mask

aggregation framework to improve; one possibility is make

it deep in the future work.

Besides, we find that the two question representations,

bag-of-wrods (B) and word embedding (W), give rise to

distinguishable results for either mask aggregation or De-

convNet. This observation is intriguing since it implies that

the QFSS task is responsive to the question representation

schemes. It is thus reasonable to expect that QFSS will both

benefit from and advance the progress on joint vision and

language modeling methods.

Finally, Figure 8 shows some qualitative segmentation

results. Note the two separate instance segmentations in the

first row that visually answer the “How many” question.

4. Conclusion

In this paper, we propose to link the instance segmenta-

tions provided by COCO [24] to the questions and answers

in VQA [3]. The collected links, named visual questions

and segmentation answers (VQS), transfer human supervi-

sion between the individual tasks of semantic segmentation

and VQA, thus enabling us to study at least two problems

with better leverage than before: supervised attention for

VQA and a novel question-focused semantic segmentation

task. For the former, we obtain state-of-the-art results on

the VQA real multiple-choice task by simply augmenting

multilayer perceptrons with some attention features. For the

latter, we propose a new approach based on mask aggrega-

tion. To put it in perspective, we study a baseline method

and an upper-bound method by assuming the instance seg-

mentations are given as oracles.

Our work is inspired upon observing the popularity of

COCO [24]. We suspect that the existing and seemingly

distinct annotations about MSCOCO images are inherently

connected. They reveal different levels and perspectives of

human understandings about the same visual scenes. Ex-

plicitly linking them up can significantly benefit not only

individual tasks but also the overarching goal of unified

vision-language understanding. This paper just scratches

the surface. We will explore more types of annotations and

richer models in the future work.
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