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Abstract. Background model initialization is commonly the first step
of the background subtraction process. In practice, several challenges
appear and perturb this process such as dynamic background, boot-
strapping, illumination changes, noise image, etc. In this context, this
work aims to investigate the background model initialization as a matrix
completion problem. Thus, we consider the image sequence (or video)
as a partially observed matrix. First, a simple joint motion-detection
and frame-selection operation is done. The redundant frames are elimi-
nated, and the moving regions are represented by zeros in our observation
matrix. The second stage involves evaluating nine popular matrix com-
pletion algorithms with the Scene Background Initialization (SBI) data
set, and analyze them with respect to the background model challenges.
The experimental results show the good performance of LRGeomCG [17]
method over its direct competitors.

Keywords: Matrix completion · Background modeling · Background
initialization

1 Introduction

Background subtraction (BS) is an important step in many computer vision sys-
tems to detect moving objects. This basic operation consists of separating the
moving objects called “foreground” from the static information called “back-
ground” [2,16]. The BS is commonly used in video surveillance applications to
detect persons, vehicles, animals, etc., before operating more complex processes
for intrusion detection, tracking, people counting, etc. Typically the BS process
includes the following steps: a) background model initialization, b) background
model maintenance and c) foreground detection. With a focus on the step (a), the
BS initialization consists in creating a background model. In a simple way, this
can be done by setting manually a static image that represents the background.
The main reason is that it is often assumed that initialization can be achieved
by exploiting some clean frames at the beginning of the sequence. Naturally,
this assumption is rarely encountered in real-life scenarios, because of contin-
uous clutter presence. In addition, this procedure presents several limitations,
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because it needs a fixed camera with constant illumination, and the background
needs to be static (commonly in indoor environments), and having no moving
object in the first frames. In practice, several challenges appear and perturb this
process such as noise acquisition, bootstrapping, dynamic factors, etc [11].

The main challenge is to obtain a first background model when more than
half of the video frames contain foreground objects. Some authors suggest the
initialization of the background model by the arithmetic mean [9] (or weighted
mean) of the pixels between successive images. Practically, some algorithms are:
(1) batch ones using N training frames (consecutive or not), (2) incremental
with known N or (3) progressive ones with unknown N as the process gen-
erates partial backgrounds and continues until a complete background image is
obtained. Furthermore, initialization algorithms depend on the number of modes
and the complexity of their background models. However, BS initialization has
also been achieved by many other methodologies [2,11]. We can cite for example
the computation of eigen values and eigen vectors [15], and the recent research
on subspace estimation by sparse representation and rank minimization [3]. The
background model is recovered by the low-rank subspace that can gradually
change over time, while the moving foreground objects constitute the correlated
sparse outliers.

In this paper, the initialization of the background model is addressed as
a matrix completion problem. The matrix completion aims at recovering a
low rank matrix from partial observations of its entries. The image sequence
(or video) is represented as a partially observed real-valued matrix. Figure 1
shows the proposed framework. First, a simple joint motion-detection and frame-
selection operation is done. The redundant frames are eliminated, and the mov-
ing regions are represented with zeros in our observation matrix. This operation
is described in the Section 2. The second stage involves evaluating nine popular
matrix completion algorithms with the Scene Background Initialization (SBI)
data set [12] (see Section 3). This enables to analyze them with respect to the
background model challenges. Finally, in Sections 4 and 5, the experimental
results are shown as well as conclusions.

Throughout the paper, we use the following notations. Scalars are denoted
by lowercase letters, e.g., x; vectors are denoted by lowercase boldface letters,
e.g., x; matrices by uppercase boldface, e.g., X. In this paper, only real-valued
data are considered.

2 Joint Motion Detection and Frame Selection

In order to reduce the number of redundant frames, a simple joint motion detec-
tion and frame selection operation is applied. First, the color images are con-
verted into its gray-scale representation. So, let a sequence of N gray-scale images
(frames) I0 . . . IN captured from a static camera, that is, I ∈ R

m×n where m
and n denote the frame resolution (rows by columns). The difference between
two consecutive frames (motion detection step) is calculated by:

Dt =
√

(It − It−1)2 | t= 1,...,N , (1)
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Fig. 1. Block diagram of the proposed approach. Given an input image, a joint motion
detection and frame selection operation is applied. Next, a matrix completion algorithm
tries to recover the background model from the partially observed matrix. In this paper,
the processes described here are conducted in a batch manner.

where Dt ∈ R
m×n denotes the matrix of pixel-wise L2-norm differences from

frame t − 1 to frame t. Next, the sum of all elements of Dt, for t = 1, . . . , N , is
stored in a vector d ∈ R

N whose t-th element is given by:

dt =
m∑

i=1

n∑

j=1

Dt(i, j), (2)

where Dt(i, j) is the matrix element located in the row i ∈ [1, . . . , m] and column
j ∈ [1, . . . , n]. Then, the vector d is normalized between 0 and 1 by:

d̂ =
dt − dmin

dmax − dmin
| t= 1,...,N , (3)

where dmin and dmax denote the minimum value and the maximum value of the
vector d. The frame selection step is done by calculating the derivative of d̂ by:

d′ =
d

dt
d̂, (4)

Next, the vector d′ is also normalized by Equation 3 and represented by d̂
′
.

Finally, the index of the more relevant frames are given by thresholding d̂
′
:

(5)y =

{
1 if |d̂′ − μ̂′| > τ

0 otherwise
,

where μ̂′ denotes the mean value of the vector d̂
′
, and τ ∈ [0, . . . , 1] controls the

threshold operator. In this paper, R ≤ N represent the set of all frames where
y = 1, and the parameter τ was chosen experimentally for each scene: τ = 0.025
for HallAndMonitor, τ = 0.05 for HighwayII, τ = 0.10 for HighwayI, and τ =
0.15 to all other scenes. Figure 3 illustrates our frame selection operation, in this
example, with τ = 0.025, only 92 relevant frames are selected from a total of
296 frames (68, 92% of reduction). In the next section, the matrix completion
process is described.
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Fig. 2. Illustration of frame selection operation. The normalized vector (in blue) shows
the difference between two consecutive frames. The derivative vector draw how much
the normalized vector changes (in red), and then it is thresholded and the frames are
selected (in orange).

3 Matrix Completion

As explained previously, the matrix completion aims to recover a low rank matrix
from partial observations of its entries. Considering the general form of low rank
matrix completion, the optimization problem is to find a matrix L ∈ R

n1×n2

with minimum rank that best approximates the matrix A ∈ R
n1×n2. Candès

and Recht [6] show that this problem can be formulated as:

minimize rank(A),
subject to PΩ(A) = PΩ(L),

(6)

where rank(A) is equal to the rank of the matrix A, and PΩ denotes the sampling
operator restricted to the elements of Ω (set of observed entries), i.e., PΩ(A) has
the same values as A for the entries in Ω and zero values for the entries outside
Ω. Later, Candès and Recht [6] propose to replace the rank(.) function with
the nuclear norm ||A||∗=

∑r
i=1 σi where σ1, σ2, ..., σr are the singular values of

A and r is the rank of A. The nuclear norm make the problem tractable and
Candès and Recht [6] have proved theoretically that the solution can be exactly
recovered with a high probability. In addition, Cai et. al [4] propose an algorithm
based on soft singular value thresholding (SVT) to solve this convex relaxation
problem. However, in real world application the observed entries may be noisy.
In order to make the Equation 6 robust to noise, Candès and Plan [5] propose
a stable matrix completion approach. The equality constraint is replaced by
||PΩ(A − L)||F≤ ε, where ||.||F denotes the Frobenious norm and ε is an upper
bound on the noise level. Recently, several matrix completion algorithms have
been proposed to deal with this challenge, and a complete review can be found
in [21].

In this paper, we address the background model initialization as a matrix
completion problem. Once frame selection process is done, the moving regions
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Fig. 3. Illustration of the matrix completion process. From the left to the right: a) the
selected frames in vectorized form (our observation matrix), b) the moving regions are
represented by non-observed entries (black pixels), c) the moving regions filled with
zeros (modified version of the observation matrix), and d) the recovered matrix after
the matrix completion process.

of the R selected frames are determined by:

(7)Mk(i, j) =

{
1 if 0.5(Dk(i, j))2 > β

0 otherwise

where k ∈ R, and β is the thresholding parameter (in this paper, β = 1e−3 for
all experiments). Next, the moving regions of each selected frame are filled with
zeros by Ik ◦ Mk, where Mk denotes the complement of Mk, and ◦ denotes the
element-wise multiplication of two matrices. For color images, each channel is
processed individually, then they are vectorized into a partially observed real-
valued matrix A = [vec(I1) . . . vec(Ik)], where A ∈ R

n1×n2, n1 = (m × n), and
n2 = k. Figure 3 illustrates our matrix completion process. It can be seen that the
partially observed matrix can be recovered successfully even with the presence of
many missing entries. So, let L the recovered matrix from the matrix completion
process, the background model is estimated by calculating the average value of
each row, resulting in a vector l ∈ R

n1×1, and then reshaped into a matrix
B ∈ R

m×n.

4 Experimental Results

In order to evaluate the proposed approach, nine matrix completion algorithms
have been selected, and they are listed in Table 1. The algorithms were grouped
in two categories, as well as its main techniques (following the same definition
of Zhou et al. [21]).

In this paper, the Scene Background Initialization (SBI) data set was cho-
sen for the background initialization task. The data set contains seven image
sequences and corresponding ground truth backgrounds. It provides also MAT-
LAB scripts for evaluating background initialization results in terms of eight
metrics1. Figure 4 show the visual results for the top three best matrix comple-
tion algorithms, and Table 2 reports the quantitative results of each algorithm
1 Please, refer to http://sbmi2015.na.icar.cnr.it/ for a complete description of each

metric.

http://sbmi2015.na.icar.cnr.it/
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Table 1. List of low-rank matrix completion algorithms evaluated in this paper.

Category Method Main techniques Reference

Rank Minimization
IALM Augmented Lagrangian [10, Linetal.(2010)]
RMAMR Augmented Lagrangian [20, Yeetal.(2015)]

Matrix Factorization

SVP Hard thresholding [13, Mekaetal.(2009)]
OptSpace Grassmannian [8, Keshavanetal.(2010)]
LMaFit Alternating [19, Wenetal.(2012)]
ScGrassMC Grassmannian [14, NgoandSaad(2012)]
LRGeomCG Riemannian [17, Vandereycken(2013)]
GROUSE Online algorithm [1, Balzanoetal.(2013)]
OR1MP Matching pursuit [18, Wangetal.(2015)]

Fig. 4. Visual comparison for the background model initialization. From top to bottom:
1) example of input frame, 2) background model ground truth, and background model
results for the top 3 best ranked MC algorithms: 3) LRGeomCG, 4) LMaFit, and 5)
RMAMR.

over the data set2. The algorithms are ranked as follow: 1) for each algorithm
we calculate its rank position for each metric, we call it as metric rank (i.e.

2 Full experimental evaluation and related source code can be found in the main
website: https://sites.google.com/site/mc4bmi/

https://sites.google.com/site/mc4bmi/
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RMAMR have the first position for the AGE metric in the HallAndMonitor
scene), next, 2) we sum the rank position value of each algorithm over the eight
metrics, and finally, 3) we calculate the rank position over the sum, and we call
it as scene rank. For the Global Rank, first we sum the scene rank for each MC
algorithm, then we calculate its rank position over the sum. As we can see, the
experimental results show the good performance of LRGeomCG [17] method
over its direct competitors. Furthermore, in most cases the matrix completion
algorithms outperform the traditional approaches such as Mean [9], Median [7]
and MoG [22] as can be seen in the full experimental evaluation available at
https://sites.google.com/site/mc4bmi/.

5 Conclusion

In this paper, we have evaluated nine recent matrix completion algorithms for the
background initialization problem. Given a sequence of images, the key idea is to
eliminate the redundant frames, and consider its moving regions as non-observed
values. This approach results in a matrix completion problem, and the background
model can be recovered even with the presence of missing entries. The experimen-
tal results on the SBI data set shows the comparative evaluation of these recent
methods, and highlights the good performance of LRGeomCG [17] method over
its direct competitors. Finally, MC shows a nice potential for background model-
ing initialization in video surveillance. Future research may concern to evaluate
incremental and real-time approaches of matrix completion in streaming videos.
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