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Abstract. Gender classification (GC) in the wild is an active area of
current research. In this paper, we focus on the combination of a holistic
state of the art approach based on features extracted from the facial pat-
tern, with patch based approaches that focus on inner facial areas. Those
regions are selected for being relevant to the human system according to
the psychophysics literature: the ocular and the mouth areas. The result-
ing proposed GC system outperforms previous approaches, reducing the
classification error of the holistic approach roughly a 30%.
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1 Introduction

Gender classification (GC) is a growing area of research with different potential
applications. This fact has recently been stated by NIST in their 2015 evalua-
tion [20]. That review highlights the difference between GC with constrained or
controlled datasets, and unconstrained or in the wild datasets. In the first sce-
nario, the most accurate system reached an accuracy up to 96.5% with a dataset
containing almost one million samples.

However, the reported results in unconstrained imagery datasets did not
present always a similar behavior. Two datasets were selected for that experi-
ment: 1)The Labeled Faces in the Wild (LFW) [16], and 2) The images of Groups
(GROUPS) [11].

Even when both datasets contain variations in terms of pose, illumination,
etc., the best Face Recognition Vendor Test (FRVT) participants reported a
remarkable difference in accuracy for each. For LFW, the best accuracy reached
95.2%, quite close to the numbers reported for constrained datasets. However,
for GROUPS it just reached 90.4%. We can argue that this effect is due to
the larger variations in terms of pose exhibited by GROUPS, and the multiple
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samples per identity included in LFW. These results were obtained with a lights-
out, black-box testing methodology.

Extending the NIST review, we summarize in Table 1 the most recent results
reported in the research literature for both datasets. A fast analysis suggests
that GROUPS is the most challenging one. The achieved accuracies are how-
ever not comparable to those obtained by commercial systems. The reader must
observe that these results were achieved not following a lights-out, black-box
testing methodology. Focusing on GROUPS, with the exception of the protocol
described by Dago et al. [9], used in [4] too, the adopted protocols are not easily
reproducible. The fact that GROUPS is currently the most challenging in the
wild dataset, has convinced us to focus on this dataset.

Table 1. GC accuracies in recent literature. The whole dataset is used, i.e. 28000
samples, with the exception of 1 aropund 14000 samples with inter ocular distance
> 20, 2 22778 aut. detected faces, 3 > 12 years old, 4 7443 of the total 13233 images,
5 BEFIT protocol, and 6 half dataset.

Reference Dataset Accuracy (%)

[9] GROUPS1 86.6%
[4] GROUPS1 89.8%
[19] GROUPS2 86.4%
[7] GROUPS2 90.4%
[3] GROUPS3 80.5%
[14] GROUPS 87.1%

[23] LFW4 94.8%
[25] LFW4 98.0%
[9] LFW5 97.2%
[21] LFW6 98.0%
[3] LFW 79.5%
[17] LFW 96.9%
[22] LFW 94.6%

Two recent results support the approach described in this paper. On the one
hand, the extraction of features at different scales may benefit the GC perfor-
mance [2,4]. In [4] the features are extracted from the face and its local context,
thus, the face is analyzed at different resolutions. This fact might introduce
redundancy, but the resulting improved performance suggests that an adequate
design reports indeed an accuracy improvement.

On the other hand, the fusion of multiple descriptors do not just reports a
benefit in GC accuracy, but also diminishes the occurrences of ambiguous cases
as demonstrated for a demographics balanced dataset [6].

Therefore, the aim in this paper is to explore whether the additional inte-
gration of features extracted from specific areas of the inner face, improves the
overall GC accuracy. The contributions of this work are: 1) separately the peri-
ocular and the mouth area provide an accuracy greater than 80% for GROUPS,
2) the adequate selection of periocular and mouth features, that are later fused
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with standard state-of-the-art facial based GC systems, provides a significant
augment in terms of GC accuracy.

2 Approach

We therefore assume the ideas described above, i.e. the interest for the GC
problem of a proper combination of features and regions of interest. We start
from a baseline, given by a state of the art facial based GC system [4], to later
explore the fusion with features densely extracted from some specific areas of the
inner face [5]. With this concept in mind, we have revisited the analysis of the
human visual system for the GC problem using bubbles [13], where the authors
argue that both the ocular and the mouth areas are discriminant for this task
to the human system.

An initial study of the integration of the periocular area [5] has already sug-
gested that this approach may improve the GC performance up to 2 percentage
points. Indeed, the use of components for facial analysis is a known idea. The
work by Heisele et al. [15] made use of two layers of classifiers, being the second
the combination of the first layer scores. The approach obtained better results
than just using global features. In this paper, we indeed do not restrict to inner
facial patches but also integrate features extracted from the whole facial pattern.
To avoid redundancy, we select the best configuration of features, areas and grid
configurations.

Summarizing, the considered patterns are presented in Figure 1: the head
and shoulders (HS), the face (F), the periocular (P), and the mouth (M) areas.
They all are automatically cropped from the original head and shoulders pattern
(with a dimension of 155 × 159 pixels with 26 pixels of inter-eye distance), with
the exception of the HS pattern that is down-sampled to 64 × 64 pixels. The
original pattern is obtained after a normalization process guided by the eye
locations, that encloses rotation, scaling and translation to fix the normalized
eye locations.

Fig. 1. From left to right, head and shoulders (HS) (64 × 64 pixels), face (F) (59 × 65
pixels), periocular (P) (37×31 pixels), and mouth (M) (19×49 pixels) regions. Sample
taken from GROUPS.

After selecting the patterns to be used, we proceed with a number of steps
with the final goal of evaluating the fusion or combination of multiple experts.
We analyze the periocular (P) and mouth (M) areas as follows:
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1. Explore the features and grid resolutions for both P and M.
2. Select the most discriminant features and grids using P and M.
3. Evaluate the combination of the state of the art GC system with the best P

and M descriptors separately.
4. Evaluate the combination of the state of the art GC system with the best P

and M descriptors jointly.

Based on current literature and our background related to GC, we use as
features different local descriptors. Local descriptors are currently being applied
for facial analysis, based on a grid configuration to avoid the loss of spatial
information produced by a single based histogram representation [1].

A grid configuration is defined by its number of horizontal and vertical cells,
respectively cx and cy, making a total of cx × cy cells. For a given feature, a
histogram is computed in each cell, hi, where the bins indicate the number of
occurrences of the different codes. The final feature vector, x, is composed by
the concatenation of cx × cy histograms, i.e. x = {h1, h2, ..., hcx×cy}.

In few words, each expert is designed with a particular feature and grid
configuration. For P we have analyzed grid configurations in the range cx ∈
[1, 8] and cy ∈ [1, 6], while for M we have covered the range cx ∈ [1, 8] and
cy ∈ [1, 8]. That makes respectively a total of 48 and 64 variants per descriptor.
As descriptors we have considered 8 different alternatives:

– Histogram of Oriented Gradients (HOG) [10].
– Local Binary Patterns (LBP) and uniform Local Binary Patterns

(LBPu2) [1].
– Local Gradient Patterns (LGP) [18].
– Local Ternary Patterns (LTP) [24].
– Local Phase Quantization (LPQ) [26].
– Weber Local Descriptor (WLD) [8].
– Local Oriented Statistics Information Booster (LOSIB) [12].

For the final fusion analysis, we adopt a score level fusion approach based
on SVM classifiers similarly to [4,15]. The first layer is formed by the classifiers
after selecting the best descriptors and grid configurations of each pattern for
the problem, while the second layer classifier takes as input the first layer scores.

3 Results

As mentioned above, we adopt the Dago’s protocol as experimental setup. This
protocol defines a 5-fold cross validation for the GROUPS dataset. The dataset
is reduced to around 14000 samples as the protocol includes only those faces that
present an inter-eye distance larger than 20 pixels in the original source image.

We present in first term the results achieved making use of features extracted
only from P and M. Tables 2 and 3 summarize the best results achieved for the
first fold of the Dago’s protocol. Due to the lack of space, only their best accuracy
obtained for each descriptor configuration and pattern is included in both tables.
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Table 2. Periocular based best single descriptor results in terms of accuracy (%)
obtained for the first fold of the Dago’s protocol. For each descriptor the best grid setup
is indicated. Those descriptors providing an accuracy larger than 77% are highlighted.

HOG7×6 LBPu2
8×3 LBP6×3 LGP6×6 LTP3×2 LPQ2×2 WLD6×3 LOSIB7×6

Periocular 83.02 80.31 76.24 77.88 80.08 76.00 82.20 76.45

Table 3. Mouth based best single descriptor results in terms of accuracy (%) obtained
for the first fold of the Dago’s protocol. For each descriptor the best grid setup is
indicated. Those descriptors providing an accuracy larger than 75% are highlighted.

HOG8×8 LBPu2
5×5 LBP4×5 LGP7×6 LTP3×2 LPQ2×2 WLD4×5 LOSIB7×6

Mouth 80.90 77.71 74.87 76.62 77.68 74.43 78.23 73.37

Table 4. Mean accuracies for the Dago’s protocol with score level fusion based on the
face (F), head and shoulders (HS), periocular (P) and mouth (M) areas. Each result is
associated with the pattern and features fused.

Pattern(s) Approach Features Acc.

P
Single P-HOG 81.61
Fusion P-HOG + P-LBPu2 + P-LBP + P-WLD 82.79

M
Single M-HOG 80.55
Fusion M-HOG + M-LBP + M-WLD + M-LGP 81.43

F+HS Fusion F-HOG + F-LBPu2 + HS-HOG 90.49

F+HS+P Fusion
F-HOG + F-LBPu2 + HS-HOG

92.42
P-HOG + P-LBPu2 + P-LBP + P-WLD + P-LOSIB

F+HS+M Fusion
F-HOG + F-LBPu2 + HS-HOG

91.60
M-HOG + M-LBP + M-WLD + M-LGP

F+HS+P+M

Fusion 1
F-HOG + F-LBPu2 + HS-HOG

93.22P-HOG + P-LBPu2 + M-HOG + M-WLD

Fusion 2
F-HOG + F-LBPu2 + HS-HOG

93.22P-HOG + P-LBPu2 + P-LGP + M-HOG

Fusion 3
F-HOG + F-LBPu2 + HS-HOG

93.15P-HOG + P-LBPu2 + M-LGP + M-HOG

The accuracies are slightly worse for M compared to P. Being in both cases
significantly worse than those reported by recent face based GC systems. For
the later fusion analysis, we have selected those descriptors providing an accu-
racy larger than 77% for P, and larger than 75% for M. Making a total of 11
descriptors.

The next step considers the fusion of the most discriminant descriptor setups
with the state of the art approach described in [4]. This approach extracts HOG
and LBP features from F (F-HOG and F-LBP), and HOG from HS (HS-HOG).
The fusion is evaluated first separately with the best descriptors for P and M,
including exhaustive search among all possible combinations. This means that
we evaluated all possible combinations with P, 25, and M, 26.
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Fig. 2. ROC curves using the Dago’s protocol. Comparison of state-of-the-art classifi-
cation based on F and HS, with the proposed fusion alternatives considering HS and
F features respectively with P, M and both.

The final experiment evaluates the fusion with both sets of descriptors, i.e.
covering the whole range of possible combinations, i.e. 211 possibilities. The
results reported for each approach are summarized in Table 4 indicating the best
descriptors combination. The reported results correspond to the 5-folds mean
highest accuracy achieved, varying the cost and gamma parameters respectively
within the intervals C = [0.5, 5] and gamma = [0.04, 0.15].

As suggested by the table, the best approach fuses descriptors extracted from
all the patterns. We have included the top-3 approaches, they report quite similar
accuracies, but certainly those using a lower number of features will reduce the
processing cost.

A detailed observation indicates that for the Dago’s protocol, the improve-
ment in accuracy is close to 3 percentage points. Observing the resulting ROC
curves (only the best results for each fusion approach is presented in Figure 2)
the fusion with P alone, is better than fusing with M. However, the combination
with both P and M reports better performance, in terms of accuracy and AUC,
that not using features extracted from any of those inner facial areas.

4 Conclusions

In this paper, we have explored the benefits of combining holistic features with
features extracted from specific inner facial regions. In particular we have focused
on the ocular and mouth areas, that have evidenced their main importance for
this task in the human system.
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The achieved results indicate a promising line of research. Indeed the GC
performance increased up to 3 percentage points, reducing the gap present in
GC accuracy with other simpler datasets. Observing the error for the facial
based state of the art approach, 9.5%, the proposed systems reduces the gender
classification error in more than 28%.
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