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Abstract. Following the recent Internet of Everything (IoE) trend, sev-
eral general-purpose devices have been proposed to acquire as much
information as possible from the environment and from people inter-
acting with it. Among the others, sensing floors are recently attracting
the interest of the research community. In this paper, we propose a new
model to store and process floor data. The model does not assume a reg-
ular grid distribution of the sensing elements and is based on the ground
reaction force (GRF) concept, widely used in biomechanics. It allows
the correct detection and tracking of people, outperforming the common
background subtraction schema adopted in the past. Several tests on a
real sensing floor prototype are reported and discussed.

Keywords: Human-computer interaction - Sensing floor - Pressure
analysis - Center of pressure + Ground reaction force

1 Introduction

In the last years, the research on non-invasive human-computer interaction sys-
tems has attracted a wide interest. Therefore, a lot of systems based on video
cameras [2], depth sensors [7], wearable devices [3], and sensing environments [5]
have been proposed for interactive media applications. In particular, the adop-
tion of sensing floors plays a key role in the development of sensing environments
thanks to two significant properties: low invasiveness and high invisibility (i.e.,
the sensing layer is invisible to the users and the floor appears similar to tradi-
tional floors to avoid the “observer effect”).

Their applications are manifold in several fields, including both public and
private environments. For example, smart buildings can include sensing floors
to detect the presence of people and to automatically switch on/off the light-
ing or the heating systems. In the e-health field, these devices can be used to
detect dangerous situations such as an elder falling or getting out of his/her
bed. Furthermore, sensing floors can be used for people counting or to monitor
crowd movements during public events, exhibitions, and so on. In comparison
with other traditional technologies such as video cameras, sensing floors provide
less information but have two undoubted advantages. First, they are completely
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Fig. 1. Schema of two different placement of 25 sensors with (a) a random distribution
or (b) a grid. Examples of Floor Cells with 4 sides and 4 vertices are colored in red.

privacy compliant as above mentioned. In fact, it is not feasible to recognize
and identify users from floor data only. Installations on very private places such
as toilets or bedrooms are allowed. Second, sensing floors data are not affected
from occlusions, a typical issue of visual camera systems.

Since 1997, when J. Paradiso [12] at MIT presented the first example of a
sensing floor, several prototypes have been proposed and designed. The adopted
sensors exploit different physical characteristics, such as the pressure as measur-
able quantity, and the proximity effect related with the electrical properties of a
human body. A complete analysis of these differences can be found in [15] and
in [20].

Regardless of the technology adopted to build the sensing floor, this paper
aims at focusing on the data model and the corresponding processing algorithms.
The prevalent approach has been borrowed from the image processing field. Each
sensing element is related to a pixel of an image. The pressure applied on top of a
sensor is translated to a corresponding pixel intensity. In the following, we refer
to this approach as PIM (Pressure Image Model). At each sampling instant, the
sensing floor generates a sort of pressure image, where each pizel corresponds
to a spatial portion of the floor and the pizel value is related to the pressure
applied on the top of it. Consecutive temporal pressure images can be collected
as frame sequences to generate a pressure video, whose analysis allows to detect
and determine spatio-temporal events on sensing floors [9].

Two different types of image can be generated, depending on the physi-
cal sensor capabilities, i.e., binary and grey-level pressure images, respectively.
Binary pressure images are generated by sensing floors made using matrix of
switch sensors, such as those proposed in [10] or in [19]. When a switch sensor is
activated, the corresponding pixel value is triggered to on. Binary images only
provide information related to people or object positions on the sensing area.
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Additional information related to the object/person weight or to the dynamical
interaction with the floor are lost.

On the contrary, grey-level pressure images are generated by floors made
using regular distribution of continuous sensors, such as those described in [18]
and in [1]. In this case, each sensor response and the corresponding pixel val-
ues are changing as a function of the applied pressure. Grey-level images are
characterized by a higher information content.

Despite its simplicity, PIM allows to use common video processing and anal-
ysis techniques to provide people detection and the further classification of their
behaviors [9]. In particular, background subtraction techniques based on Gaus-
sian or median distributions of the pixel values are used to extract the fore-
ground regions, position-based trackers are employed to follow sensed people in
the course of time, while machine learning classifiers are implemented for the high
level action or interaction analysis as in [16], [8] and [11]. As a consequence, sen-
sor floors can be adopted as input devices in a plethora of applications, spanning
from multimedia content access to surveillance, from entertainment to medical
rehabilitation.

Nevertheless, two major drawbacks characterize traditional approaches.
First, their implementation is not straightforward in absence of a regular spatial
distribution of the sensors. Second, symmetric and pixel-wise statistical models
(such as Gaussian or median distributions) are not suitable for floor sensors.

In gait-postural analysis, the exploitation of force platforms made of piezo-
electric sensors, capacitance gauges, strain gauges, or FSR can be considered a
common practice. Kinesiologists can estimate the Ground Reaction Force (GRF)
and the Center of Pressure (COP) of a person standing or moving on these mea-
suring instruments. The first is the vector sum of the normal components of the
forces exerted on the top of the measuring platform. The second is the point
location of the vertical GRF vector and represents a weighted average of all the
pressures over the surface of the area in contact with the platform [21]. The
temporal analysis of GRF variations and COP displacements allows to detect
people (see [20], [13], [4] and [6]).

For these reasons, starting from the concepts of COP and GRF, the aim of
this work is to describe a model which overcomes the above mentioned draw-
backs.

The paper is structured as follows: in Section 2 we introduce a COP based
data model and we propose a possible implementation of a detection and tracking
algorithm developed on the basis of it. Section 3 describes the experimental
setup, the obtained results and a comparison with the traditional PIM model.
Finally, conclusions and future works are drawn in Section 4.

2 The COP MODEL

2.1 Data Model

As a reference technology, we have adopted the sensing floor solution described
in Lombardi et al. [9]. The device is composed of a sensing layer covered by a grid
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of ceramic tiles. The sensing layer is obtained by disposing on the ground plane
a set of sensing elements. Differently from the PIM approach, a free distribution
of the sensing elements is allowed and is not imposed to follow a grid. Each
sensor s; is thus identified by its real position on the floor (Xj,Y;), instead of
its indexes on the grid. The tiles coverage has been included to preserve the
integrity of the sensors and, at the same time, to diffuse the pressures exerted
on a single point of the floor to a neighbor area.

At each capturing interval ¢, all the sensors s € S provide a corresponding
discrete response V;(t). The whole area covered by the set of sensors can be
partitioned into convex polygonal cells, having the sensors as vertices. The type
of polygonal decomposition strictly depends on the sensor layout and the spatial
resolution. Two very different cases are reported in Figure 1. If the sensors are
placed with a regular grid distribution as usual, a possible decomposition is
composed by rectangular cells as reported in Figure 1(b). The obtained areas
are called Floor Cells hereinafter, and are represented by the set of sensors
placed at the vertices: FC; C S, (i =1,2,--- , M).

The state of a Floor Cell FC; is represented by a 3D point P; (i =
1,2,---, M) as follows:

Z X3~Vs(t) Z YsVs(t)
RO = B0 | = |25 Sy 2 V0

VseFCy VseFC;

The first two coordinates PP, P/ are respectively equivalent to the plane
coordinates of the COP, while the third one P7 is the intensity of the GRF
associated to the floor cell.

When no pressures is exerted on a floor cell FC;, the location P;{? of the 3D
point is only influenced by the sensor calibration and the dead weight of the tiles.
Instead, when a person walks on the floor, the corresponding pressure moves the
point P; from the equilibrium state Pf¢ toward a new position P;(t) . From Eq.
1, the projection of P; on the ground plane falls within the F'C; convex-hull.

At time ¢, a floor cell FC; can be considered in an excited state (i.e., a person
or an object is located on the corresponding region) if the following condition
occurs:

[INi - (Pi(t) = P{)|l2 > TH (2)

where TH is an application defined threshold, || - ||z is the Euclidean norm, N;
indicates the following normalization matrix:
N; = diag (d,;,d,;,d.}) . (3)

The normalization matrix is defined for each floor cell F'C; and takes into
account the geometrical extent of the cell itself. d, ; and d,,; are the dimensions
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of the F'C; convex-hull, while d ; is the maximum variation of the GRF inten-
sity and is estimated during a calibration phase of the capturing board. As a
consequence of the random spatial distribution of the sensors, even a single per-
son may trigger more than one floor cell. Thus, a cluster of neighbor floor cells
will switch to a non-equilibrium condition for each person located on the sensing
floor. The temporal analysis and tracking of these clusters allows to detect and

Floor Sensor values - empty Floor Sensor values wiht 1 person

Perturbation of COP points

Fig. 2. Visual example of the COP vectors. (a) and (b) pictures of the empty floor
and with a walking person. The sensor values captured at the equilibrium (c) and with
the walking person (d). On the right (e), a plot of the vectors P;(t) — P{? evaluated in
equation 2.
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track people on the floor, as detailed in the following section. A visual example
is reported in Figure 2. The sensor values captured at the equilibrium and with
a walking person are reported on the left and center graphs. On the right, a plot
of the vectors P;(t) — P{? evaluated in equation 2 are shown.

2.2 People Detection and Tracking

Let C;(t) = {FCy} be a cluster of neighbor floor cells which are simultane-
ously excited at time t. Eq. 2 filters out contributions due to the noise and
assures that the cluster has been generated by a person on the floor. His posi-
tion (B (t), B} (t)) on the floor at time ¢ can be estimated from the 3D points
P; associated to the floor cells included in the cluster as in equation (4):

My () = ¥ P (1)
BI0) = 37 g SePr)- o), )

BY(t) = Mj(t) > P(t) - PE(t)

The set of clusters is obtained with a connected component labeling of all
the excited cells. Two F'C's are defined as connected if their intersection contains
at least one sensor. For a uniform grid distribution, this assumption is similar
to the 8-connection of pixels (See Fig. 1(b)).

Successive detections of the same person are temporally tracked with a near-
est neighbor matching based on positions only. The main purpose of the tracking
step is the recovering of people’s positions in some short temporal slots, during
which the floor is not able to detect them. For example, when a person changes
the front feet during a walking or, more clearly, during a jump, the pressure
exerted on the floor is null.

Given the detections D; at frame ¢ and the current set of tracks 7}, we first
compute the Euclidean distance matrix I'(¢, j) = Da(D;, T;). The detection-to-
track association is provided using the schema proposed in [14]. For each frame,
some detections may be assigned to tracks, while other detections and tracks
may remain unassigned. The assigned tracks are updated using the correspond-
ing detections. The unassigned tracks are marked invisible. Finally, unassigned
detections begin new tracks. Each track keeps count of the number of consecutive
frames where it remained unassigned. If the count exceeds a specified threshold,
the tracking algorithm assumes that the object left the floor and it deletes the
track.

Since the applications described in this paper are not required to work in very
crowd situations, the implemented tracking algorithm does not handle groups
(i.e., people closer to each other than a foot step) nor abrupt position changes
(e.g., people leaping around). The reader can refer to [17] for more complex
tracking schemes, if required by the application.
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Fig. 3. ROC curve at different thresholds of the detection algorithm proposed in
Section 2.2 on a calibration sequence with a person of 45 Kg on the sensing floor.

3 Experimental Evaluation

3.1 Experimental Setup

To evaluate the proposed method, we have exploited a Florimage Device dis-
tributed by Florim Ceramiche SpA! and described in [9]. The device is covered
by tiles of 600 mm x 600 mm, thin enough (4.5mm) to allow the sensing ele-
ments below them to capture the presence of walking people. The sensors are
distributed on a regular grid of 16 rows by 20 columns. The 320 sensing units
covers a rectangular area of 4 square meters.

The experimental environment is also equipped with a Microsoft Kinect sen-
sor. The acquisition of the floor data and of the Kinect sensor are synchronized
with an external trigger (set to work at 10Hz in these experiments). The people
detection and tracking capabilities of the Kinect subsystem have been exploited
to automatically generate the ground truth, composed by the set of people posi-
tions on the floor. The Extrinsic calibration parameters of the Kinect device
with respect to the floor have been estimated to transform the 3D coordinates
of people feet joints into floor coordinates.

Using the experimental setup, 6 data sequences? of walking people have been
acquired, involving 1 to 7 individuals. People weights are also ranging from 45
Kg to 100 Kg.

The algorithm has been evaluated counting the number of True Positive (TP),
False Positive (FP) and False Negative (FN) detections. A detection provided
using the algorithm reported in Section 2.2 is counted as a TP if the Kinect
sensor provides a corresponding person position closer than 25 ¢m. The precision

! http://www.slim4plus.it /en/floor-sensor-system/
2 Dataset available at http://imagelab.ing.unimore.it/go/sensingFloor
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Table 1. Detection algorithm results

Seql Seq2 Seq3 Seq4 Seqb Seqb
PIM[ COP PIM[ COP PIM[ COP PIM[ COP | PIM ]COP PIM[ COP
Nframes 2353 1936 1504 1060 1311 1901

Precision| 0.79 | 0.91 | 0.53 | 0.87 | 0.77 | 0.95 |0.79| 0.76 | 0.79 |0.89| 0.71 | 0.87

Accuracy| 0.86 | 0.92 | 0.53 | 0.86 | 0.78 | 0.96 |0.83| 0.81 | 0.81 |0.91| 0.65 | 0.84
TP 1245|1204 | 1333 | 1253 | 1287 | 1286 | 699 | 699 | 1028 | 1027|1793 | 1921
FP 326 | 121 |1161| 192 | 393 | 65 | 183 | 218 | 280 | 126 | 737 | 285
TN 861 | 1024 | 18 | 479 | 87 | 173 | 210 | 220 | 157 | 271 | 88 | 314

MD (cm)|20.68(20.44(24.56|20.37|17.37|14.63|19.70/19.02(15.40|15.69(21.03(19.11

Table 2. Tracking algorithm results

Seql Seq2 Seq3 Seq4 Seqb Seq6
PIM[COP |PIM[COP [PIM[COP [PIM[COP [PIM[COP [PIM[COP
Nframes 2353 1936 1504 1060 1311 1901

Precision|0.84|0.94|0.57(0.90|0.80|0.96|0.82| 0.79 | 0.83]0.91|0.75|0.90
Accuracy|0.88{0.94|0.56|0.88|0.81|0.97|0.85| 0.83 [0.85|0.92|0.68 |0.86
TP 1232|1203 (1305|1249 (1284|1286 | 698 | 699 [1026|1027 |1768| 1920
FP 239 | 82 | 999 | 143 | 326 | 48 | 157 | 190 | 213 | 105 | 598 | 223
TN 905 [1027| 35 | 482 | 95 | 174 | 217 | 221 | 173 | 272 | 106 | 318

Pr = TP/(TP + FP) and accuracy Ac = TP/(TP + FN) metrics are also
computed as usual.

Thanks to the regular distribution of the sensing elements on a grid, M = 285
floor cells F'C; of 4 sensors each have been generated using the schema reported in
Figure 1. For each floor cell F'C;, the coordinates of the equilibrium state point
P7? were estimated by averaging a short sequence of sensor values captured
with the empty floor. The threshold TH of Equation 2 has been set to 0.65
by maximizing the precision and recall of the detection algorithm proposed in
Section (2.2) on a calibration sequence. The corresponding ROC curve obtained

at different threshold values is reported in Figure 3.

3.2 Reference PIM Method

As a baseline, we have implemented a PIM based detection and tracking algo-
rithm, following the recommendations provided in [9)].

Let I(x,y,t) be the pressure image obtained at time ¢ in the PIM based
approach. Each pixel intensity is proportional to the value V(t) captured by the
corresponding sensor. In order to filter the contributions due to the dead weight
of the tiles coverage, each pressure images is pre-processed using a background
subtraction approach as follows:

IT(z,y,t) = I(z,y,t) — Ioq (5)
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where I, is the pressure image acquired when no people are walking on the
sensing floor. Peaks on the image I(x,y,t) that are higher than a threshold are
considered as activated (i.e., generated by a person or an object moving on the
sensing floor). The detections D(t) are obtained through a mean-shift clustering
of the activated sensors. Similarly to the COP based system, a nearest-neighbor
tracking algorithm is included in the processing chain (see Section 2.2).

3.3 Quantitative Results

We tested and compared the proposed method and the baseline PIM algorithm
on the six sequences described in section 3.1. Table 1 and Table 2 report the
values of all the estimated performance parameters for each sequence, with or
without the tracking stage, respectively. In each table, the best results in term
of precision and accuracy are highlighted. The precision and accuracy obtained
with the COP model are higher than those obtained with the PIM one, except
for the 4-th sequence.

The mean distance between the detection and the ground truth positions is
also reported in the last row of Table 1. The closest mean distances are those
obtained with the COP based detection algorithm.

4 Conclusion and Future Works

In this paper, we proposed a new data model for storing and processing infor-
mation acquired by sensing floor. Due to the customary regular distribution of
the sensor units, their values are usually stored as pressure images and processed
with common computer vision algorithms [9,10]. These methods are difficult to
apply to a general sensor distribution.

Instead, the proposed COP model does not assume a regular grid distribution
of the sensing elements and is based on the ground reaction force (GRF) concept,
widely used in biomechanics. It allows the correct detection and tracking of
people, outperforming the common background subtraction schema exploited in
the past. Several tests on a real sensing floor prototype confirm the validity of
the model and the outperforming capabilities on people detection and tracking.

As future work, we plan to deeply address the Floor Cell creation step, taking
into account different shapes and sizes of the floor cells. In addition, we want
to extent the method to the case of overlapping cells, which requires a new
definition of connection between cells for the clustering task. Finally, a more
sophisticated detection and tracking algorithm based on both the module and
the direction of the COP vectors will be handled.

Acknowledgments. This work was supported by Florim Ceramiche S.p.A. (Italy)
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