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Abstract. Theoretical properties of multi-scale opening (MSO), a new mathe-
matical morphological operator, are established and its application to separation 
of conjoined fuzzy objects is presented. The new MSO operator accounts for 
distinct intensity properties of individual objects inside the assembly of two 
conjoined fuzzy objects by combining fuzzy distance transform (FDT), a mor-
phologic feature, with fuzzy connectivity, a topologic feature, to iteratively 
open two objects starting at large scales and progressing toward finer scales. 
Results of application of the new mathematical morphological operator to sepa-
rate conjoined arterial structures in mathematically generated phantoms and for 
segmentation of arteries and veins in a physical cast phantom of a pig lung are 
presented. Performance of the MSO operator is also evaluated in terms of pa-
tients’ pulmonary non-contrast CT data for separating arteries and veins and for 
complete carotid vascular segmentation for patient’s CTA data set. 
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1 Introduction 

Knowledge extraction over varying scales or multiple layers in two- and higher-
dimensional images has remained a front-line research objective over several decades 
[1–5]. Object segmentation in images is one of the major challenges in many such 
applications[6–11]. It is difficult to design general purpose segmentation methods 
and, often, we face a new segmentation challenge that may not be efficiently solved 
the using existing methods. Design of the mathematical morphological operators play 
a key role in the success of many segmentation methods. In case of multi-layered 
extraction of knowledge, the segmentation results are often found to be extremely 
sensitive to the choice of the structure size of the morphological operators. In this 
work, we present multi-scale opening (MSO) as a new mathematical morphological 
operator, capable of separating two conjoined fuzzy objects over varying scales. We 
also present the theoretical validations for the new morphological operator and 
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present the results with respect to both mathematical and vessel-cast phantoms and 
patients’ data. Two different situations may arise here regarding the intensity distribu-
tion of the conjoined structures, 1) segmentation of fused iso-intensity objects and, 2) 
segmentation in shared intensity space.  

The developed MSO operator use fuzzy distance transform (FDT) [16], a morphol-
ogic feature, with topologic fuzzy connectivity [17–20] algorithm to develop a multi-
scale opening operator for separating two conjoined fuzzy objects fused at different 
locations and scales. The proposed method for multi-scale opening starts with a fuzzy 
segmentation of the assembly of two conjoined objects, and two sets of seed points 
(one for each object). The method outputs spatially separated objects. It is designed 
under the assumption that fusions of the two objects are locally separable using a 
suitable morphological opening operator. The method uses a novel approach to solve 
the following two fundamental challenges: 1) how to find local size of morphological 
operators and, 2) how to trace continuity of locally separated regions. These chal-
lenges are met by combining FDT, a morphologic feature with a topologic fuzzy con-
nectivity, and a constrained dilation to iteratively open finer and finer details starting 
at large scales and progressing toward smaller scales. 

2 Theory of Multi-Scale Opening of Conjoined Fuzzy Objects 

A three dimensional (3D) cubic grid, is represented by ࣴଷ|  ࣴ is the set of integ-
ers. A grid point, often referred to as a point or a voxel, is an element of ࣴଷ and is 
represented by a triplet of integer coordinates. Standard 26-adjacency [21] is used 

here, i.e., two voxels ݌ ൌ ൫ݔଵ, ,ଷ൯ݔ,ଶݔ ݍ ൌ ሺݕଵ, ଷሻݕ,ଶݕ א ࣴଷ are adjacent if and only 

if maxଵஸ௜ஸଷ|ݔ௜ െ ௜ݕ | ൑ 1, where |·| returns the absolute value. Two adjacent voxels 
are often referred to as neighbors of each other; the set of 26-neighboors of a voxel ݌  excluding itself is denoted by ࣨכሺ݌ ). An object ࣩ  is a fuzzy 
set ሼሺ݌, ݌|ሻሻ݌ሺࣩߤ א ࣴଷሽ of ࣴଷ, where ࣩߤ: ࣴଷ ՜ ሾ0,1ሿ is the membership function. 
The support ߆ሺࣩሻ of an object ࣩ is the set of all voxels with non-zero member-
ship, i.e.,  ߆ሺࣩሻ ൌ ሼ݌ | ݌ א ࣴଷ and ࣩߤሺ݌ሻ ് 0ሽ തሺࣩሻ߆ ; ൌ ࣴଷ െ ሺࣩሻ߆  is the back-
ground. Images are always acquired with a finite field of view. Thus, we will as-
sume that an object always has a bounded support. Let ܵ denote a set of voxels; a 
path ߨ in ܵ from ݌ א ܵ to א ݍ ܵ is a sequence ݌ۃ ൌ ,ଵ݌ ,ଶ݌ ڮ , ௟݌ ൌ  of voxels ۄݍ
in ܵ such that every two successive voxels on the path are adjacent. A link is a 
path ݌ۃ, ۄݍ  consisting of exactly two mutually adjacent voxels  ݌, ݍ א ࣴଷ . The 
length of a path ߨ ൌ ,ଵ݌ۃ  ,ଶ݌ ڮ , ࣩ in a fuzzy object ۄ௟݌ , denoted by Пࣩሺߨሻ, is 
defined as the sum of lengths of all links along the path, i.e., 

Пࣩሺߨሻ ൌ ෍ 12௟ିଵ
௜ୀଵ ൫ μࣩሺ݌௜ሻ ൅ μࣩሺ݌௜ାଵሻ൯ צ ௜݌ െ ௜ାଵ݌ צ .                     ሺ1ሻ 
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The fuzzy distance between two voxels ݌, ݍ א ࣴଷ  in an object ࣩ , denoted by ࣩ߱ሺ݌, ,݌i.e., ࣩ߱ሺ ,ݍ to ݌ ሻ, is the length of one of the shortest paths fromݍ ሻݍ ൌ minగ࣪אሺ௣,௤ሻ Пࣩሺߨሻ| ࣪ሺ݌,  ሻ,                                        ሺ2ሻݍ

where, ࣪ሺ݌,  The fuzzy distance transform or FDT .ݍ to ݌ ሻ is set of all paths fromݍ
of an object ࣩ is an image ൛൫݌, ݌ |ሻ൯݌ሺࣩߗ א ࣴଷൟ, where ࣩߗ: ࣴଷ ՜ Ըା| Ըା is  set of 
positive real numbers including zero, is the fuzzy distance from background. i.e., ࣩߗሺ݌ሻ ൌ  min௤א௵ഥሺࣩሻ ࣩ߱ሺ݌,  ሻ.                                                    ሺ3ሻݍ

Local scale is defined as the depth (i.e., the FDT value) at the nearest locally-
deepest voxels. Let ܵ୫ୟ୶ ؿ ሺࣩሻ be the set of locally-deepest voxels, i.e., ܵ୫ୟ୶߆ ൌሼ݌ | ݌ א Θሺࣩሻ  and ݍ׊ א ௟ࣨሺ݌ሻ ሻݍሺࣩߗ , ൑ ሻሽ݌ሺࣩߗ , where ௟ࣨሺ݌ሻ  is the ሺ2݈ ൅ 1ሻଷ 
neighborhood of ݌; here, ଶࣨሺ݌ሻ is used to avoid noisy local maxima. Local scale at a 
voxel ݌, denoted by ࣩߜሺ݌ሻ, is defined as the FDT value of the voxel in ܵ୫ୟ୶ nearest 
to ݌. Now onward, both “FDT” and ࣩߗ will refer to “scale-normalized FDT”. 

Let us assume two fuzzy objects ࣩࣛ  and ࣩࣜ, which are fused at various unknown 
locations and scales. The segmentation of the two fuzzy objects is solved using a new 
MSO operator in two sequential steps – Step 1: segmentation of the combined region ࣩࣛ ׫ ࣩࣜ from the background, and Step 2: separation of ࣩࣛ  and ࣩࣜ. The first step 
may trivially be achieved using simple thresholding [22, 23] and connectivity analysis 
[24, 25]. Let ࣩ be the fuzzy segmentation of the combined region obtained in Step 1. 
All subsequent analyses will be confined to the support ߆ሺࣩሻ of ࣩ; let ܫ: ሺࣩሻ߆ ՜ሾܫ୫୧୬ ,   .ሺࣩሻ߆ ୫ୟ୶ሿ be image intensity function overܫ

In the second step, segmentation is modeled as opening of two fuzzy objects mu-
tually fused at different unknown regions and scales. Often, a simple fuzzy connectiv-
ity or edge analysis may not be suitable to separate the two structures. On the other 
hand, the two objects may frequently be locally separable using a suitable morpholog-
ical opening operator. The challenges here are – (1) how to determine local size of 
suitable morphological operators and (2) how to combine the locally separated re-
gions. The MSO operator combines fuzzy distance transform (FDT) [26], [16] a mor-
phologic function with a topologic fuzzy connectivity [17, 18, 27] to iteratively open 
the two objects starting at large scales and progressing toward finer scales.  

2.1 Optimal Erosion Using Morpho-Connectivity 

Here, we define the algorithm during the first iteration.  It starts with two sets of seed 
voxels ܵࣛ  and ܵࣜ and a set of common separators ࣭ܵ . The initial FDT map ࣛߗ,଴ for 
the first object is computed from ࣩ except that the voxels in ܵࣜ ׫ ࣭ܵ  are added to the 
background; it is worth mentioning that the local scale map ࣩߜ , derived from the 
original assembled object  ࣩ, is used for normalization. FDT map ࣜߗ for the other 
object is computed similarly. It is reasonable to assume that the sets ܵࣛ , ܵࣜ, and ࣭ܵ  
are mutually exclusive. 
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Fuzzy morpho-connectivity strength of a path ߨ ൌ ,ଵ݌ۃ  ,ଶ݌ ڮ , -in a fuzzy ob ۄ௟݌
ject ࣩ, denoted as ࣩ߁ ሺߨሻ, is the minimum FDT value along the path:  ࣩ߁ ሺߨሻ ൌ minଵஸ௜ஸ௟  ௜ሻ .                                                        ሺ4ሻ݌ሺࣩߗ

Fuzzy morpho-connectivity between two voxels ݌, ݍ א ࣴଷ, denoted as ࣩߛሺ݌,  ሻ, isݍ
the strength of one of the strongest morphological paths between p and q, i.e., ࣩߛሺ݌, ሻݍ ൌ maxగ࣪אሺ௣,௤ሻ ߁ࣩ ሺߨሻ.                                                      ሺ5ሻ 

Definition 2.1. Optimum erosion for a fuzzy object ࣛ represented by the set of seed 
voxels ܵࣛ  with respect to its co-object ࣜ represented by the set of seed voxels ܵࣜ 
and a set of common separator ࣭ܵ  is the set of all voxels ݌ such that there exists an 
erosion scale that disconnects ݌ from ࣜ while leaving it connected to ࣛ, i.e., ܴࣛ,଴ ൌ  ൜݌ |  max௔אௌࣛ ߛࣛ ,଴ሺܽ, ሻ݌ ൐ max௕אௌࣜ ,଴ሺܾ,ࣜߛ  ሻൠ ,                                 ሺ6ሻ݌

where, the fuzzy morpho-connectivity functions ࣛߛ ,଴ and ࣜߛ,଴ are defined from the 

FDT maps ࣛߗ,଴ and ࣜߗ,଴, respectively The optimum erosion ܴࣜ,଴ for the object ࣜ 

is defined similarly. 

Proposition 2.1. For any fuzzy object ࣩ in ࣴଷ, for any two mutually exclusive sets 
of seeds ܵࣛ  and ܵࣜ, representing two different objects, and a set of common separa-
tor S࣭  disjoint to both ܵࣛ  and ܵࣜ, the separated regions ܴࣛ,଴, ܴࣜ,଴, after optimum 

erosion, are always disjoint, i.e., ܴࣛ,଴ ת ܴࣜ,଴ ൌ  .׎

Proof. To prove this proposition by contradiction, let us assume that the proposition  
is not true, i.e.,  ܴࣛ,଴ ת ܴB,଴ ് ݌ Let us consider a voxel .׎  in ܴࣛ,଴ ת ܴB,଴  and  

from Eqn. (6) the voxel ݌  belongs to ܴࣛ,଴  since, max௔אௌࣛ ߛࣛ ,଴ሺܽ, ሻ݌ ൐max௕אௌࣜ ,଴ሺܾ,ࣜߛ  also belongs to ܴB,଴, following the same ݌ ሻ. But since the voxel݌

equation, max௕אௌࣜ ,଴ሺܾ,ࣜߛ ሻ݌ ൐ max௔אௌࣛ ߛࣛ ,଴ሺܽ,  ▪           .ሻ. Hence contradiction݌

2.2 Constrained Dilation 

The two optimally eroded regions Rࣛ,଴ and Rࣜ,଴ (Fig. 1(a)) separates the two target 
objects using morpho-connectivity. However, each of these two separated regions 
captures only an eroded version of the target objects over respective local regions and 
dilation is needed to further improve the delineation results (Fig. 1(b)). Also, the an-
nular left-over of optimal erosion (Fig. 1(a)) wrongly permits path leakages from one 
separated region into the other. It is crucial to block such leakages in order to proceed 
with the separation process to the next finer scale. Both objectives are fulfilled by 
local dilation of the two separated objects and we refer to it as a “constrained dilation” 
Constrained dilation is applied over a “morphological neighborhood” to ensure that 
the dilation is locally confined. 
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Fig. 1. A schematic illustration of the results of different steps in the MSO algorithm – (a) 
optimal erosion, (b) constrained dilation, and (c) iterative progression to the next iteration. 

Definition 2.2. Morphological neighborhood of a set of voxels ܺ in an object ࣩ, 
denoted by ࣩܰሺܺሻ, is a set of all voxels ݌ א ݍ ׌ ሺࣩሻ such that߆ א ܺ  for which ࣩ߱ሺ݌, ሻݍ ൏ ߨ by a path ݍ is connected to ݌ ሻ andݍሺࣩߗ ൌ ݌ۃ  ൌ ,ଵ݌ ,ଶ݌ ڮ , ௟݌ ൌ  ۄݍ
of monotonically increasing FDT values.  

To define morphological neighborhood, original FDT map without scale normali-
zation is used as morphological neighborhood should capture original un-normalized 
scale and geometry of the local structure.  

Definition 2.3. Constrained dilation of ܴࣛ,଴ with respect to its co-object ܴࣜ,଴ within 

the fuzzy object ࣩ, denoted as ࣛܯ,଴, is the set of all voxels ݌ א ࣩܰሺܴࣛ,଴ሻ which are 

strictly closer to ܴࣛ,଴ than ܴࣜ,଴ (Fig. 1(b)), i.e.,  ࣛܯ,଴ ൌ  ൜݌ | ݌ א ࣩܰ൫ܴࣛ,଴൯ ٿ  max௔אோࣛ,బ ࣩ߱ሺܽ, ሻ݌ ൐ max௕אோࣜ,బ ࣩ߱ሺܾ,  ሻൠ  ,             ሺ7ሻ݌

where, the fuzzy distance function ࣩ߱ is defined over the fuzzy object ࣩ in ࣴଷ. The 
region ࣜܯ,଴ is defined similarly.  

It may be noted that, gaps between the separated regions visible in Fig. 1(a) are 
filled in Fig. 1(b) after constrained dilation and, thus, undesired paths running through 
those gaps are blocked enabling separation at the next finer scale. The two steps of 
optimal erosion and constrained dilation lead to an “optimal opening” operation pre-
paring the ground for separation at next finer scales.  

Proposition 2.2. For any fuzzy object ࣩ in ࣴଷ, for any two mutually exclusive sets 
of seeds ܵࣛ  and ܵࣜ, representing two different objects, and a set of common separa-
tor ࣭ܵ  disjoint to both ܵࣛ  and ܵࣜ , the constrained dilations ࣛܯ,଴ ࣜܯ,଴ are always 

disjoint, i.e., ࣛܯ,଴ ת ଴,ࣜܯ ൌ  .׎

Proof. To prove this proposition by contradiction first let us assume that the proposi-
tion is not true, i.e., ࣛܯ,଴ ת ଴,ࣜܯ ് ଴,ࣛܯ in ݌ Let us consider a voxel .׎ ת ଴,ࣜܯ . 
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Following ݌ א ଴,ࣛܯ  and Definition 2.3, we have max௔אோࣛ,బ ࣩ߱ሺܽ, ሻ݌ ൐ max௕אோࣜ,బ ࣩ߱ሺܾ,  is strictly closer to ܴࣛ,଴. But ݌ ሻ. Therefore݌

since ݌  also belongs to ࣜܯ,଴ , following Definition 2.3, we have max௔אோࣜ,బ ࣩ߱ሺܽ, ሻ݌ ൐ max௕אோࣛ,బ ࣩ߱ሺܾ,  .strictly closer to ܴࣜ,଴ as well ݌ ሻ, making݌

But from Proposition 2.1 we have, ܴࣛ,଴ ת ܴࣜ,଴ ൌ  cannot be ݌ Therefore the voxel .׎

strictly closer to both ܴࣛ,଴ and ܴࣜ,଴ simultaneously. Hence contradiction.           ▪ 

2.3 Iterative Progression to Multi-Scale Opening 

The optimal opening algorithm, as described above, separates two target objects at a 
specific scale and the purpose of the current step is to freeze the boundary of previous 
separation enabling propagation to the next finer scale. This step operates in a fashion 
similar to the iterative strategy described in references [19, 28] for intensity based 
fuzzy connectivity. For each of the two objects, we set the FDT values to zero over 
the region currently acquired by its rival object. Specifically, after each iteration, the 
FDT image of object ࣛ is updated as follows:  ࣛߗ,௜ሺ݌ሻ ൌ ቊ 0, if ݌ א ࣩܰ൫ܴࣜ,௜ିଵ൯ െ ,ሻ݌௜ିଵሺ,ࣩߗ,௜ିଵ,ࣛܯ otherwise .                             ሺ8ሻ 

The FDT map of the other object is updated similarly. The seed voxels ܵࣛ  and ܵࣜ 
for the two objects are replaced by  ࣛܯ,௜ିଵ  and ࣜܯ,௜ିଵ , respectively (Fig. 1(c)). 
Then, the morphological separations ࣛܯ,௜ and ࣜܯ,௜ are derived using the Eqns. (6-8) 
and Definition 2.1 to Definition 2.3. 

Proposition 2.3. For any fuzzy object ࣩ in ࣴଷ, for any two mutually exclusive sets 
of seeds ܵࣛ  and ܵࣜ, representing two different objects, and a set of common separa-
tor ࣭ܵ  disjoint to both ܵࣛ  and ܵࣜ, for any positive integer ݅, the separation results ࣛܯ,௜, ࣜܯ,௜ of the MSO algorithm are always disjoint, i.e., ࣛܯ,௜ ת ௜,ࣜܯ ൌ  .׎

Proof. This proposition will be proved by induction. From Proposition 2.1 we have ܴࣛ,଴ ת ܴࣜ,଴ ൌ ଴,ࣛܯ and from Proposition 2.2 we have ׎ ת ଴,ࣜܯ ൌ  This ensures .׎

disjoint separation of the two fuzzy objects after the first iteration of the MSO algo-
rithm. Let us assume that this proposition is true after ሺ݅ െ 1ሻth iteration, for some ݅ ൐ 1. To complete the proof, we will show that the proposition remains true after the ݅th iteration. During the ݅th iteration of multi-scale opening, the following changes take 
place in the optimum erosion and iterative progression steps as compared to the first 
iteration: ࣛߗ,଴ (or, ࣜߗ,଴) is replaced by ࣛߗ,௜ (respectively, ࣜߗ,௜) in Equation (6) and 

the set seeds ܵࣛ  is replaced by ࣛܯ,௜ିଵ  instead of ࣛܯ,଴  while ܵࣜ  is replaced by ࣜܯ,௜ିଵ, instead of ࣜܯ,଴. Therefore, following Proposition 2.1 and Proposition 2.3, the 

results of optimum erosion and constrained dilation, the output separation of the ݅th 
iteration remain disjoint, i.e., ࣛܯ,௜ ת ௜,ࣜܯ ൌ  ▪                                      .׎
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Proposition 2.4. For any fuzzy object ࣩ in ࣴଷ, for any two mutually exclusive sets 
of seeds ܵࣛ  and ܵࣜ, representing two different objects, and a set of common separa-
tor ࣭ܵ  disjoint to both ܵࣛ  and ܵࣜ, for any positive integer ݅, the separation results ࣛܯ,௜ ؿ  .௜ାଵ,ࣛܯ

Proof. Following iterative progression of multi-scale opening, during the ሺ݅ ൅ 1ሻth 
iteration, ࣛܯ,௜ is used as the set of seeds for the object ࣛ. Following Definition 2.3, ࣛܯ,௜ ؿ ࣩܰሺܴࣛ,௜ሻ ; following Proposition 2.3, ࣛܯ,௜ ת ௜,ࣜܯ ൌ ׎ . Therefore, ݌ ௜,ࣛܯא ؿ ௜,ࣛܯ െ ௜,ࣜܯ ؿ ࣩܰ൫ܴࣛ,௜൯ െ ௜,ࣜܯ . Thus, following Equation (8), ݌׊ א ௜,ࣛܯ ሻ݌௜ାଵሺ,ࣜߗ , ൌ 0. Hence, following Equation (6), ࣛܯ,௜ ؿ ܴࣛ,௜ାଵ ؿ  ▪            .௜ାଵ,ࣛܯ

Proposition 2.5. For any fuzzy object ࣩ in ࣴଷ with a finite support ߆ሺࣩሻ, for any 
two mutually exclusive sets of seeds ܵࣛ  and ܵࣜ, representing two different objects, 
and a set of common separator ࣭ܵ  disjoint to both ܵࣛ  and ܵࣜ, the MSO algorithm 
terminates in a finite number of iterations. 

Proof. For all voxels, ݌ א ݅ തሺࣩሻ, for any߆ ൒ 0, the FDT maps ࣛߗ,௜ሺ݌ሻ ൌ ሻ݌௜ሺ,ࣜߗ ൌ0. Therefore, following Eqn. (6), ܴࣛ,௜, ܴࣜ,௜ ؿ  തሺࣩሻ. Following Definition 2.2, the߆

morphological neighborhoods ࣩܰ൫ܴࣛ,௜൯, ࣩܰሺܴࣜ,௜ሻ ؿ  തሺࣩሻ. Therefore, the results of߆

constrained dilation ࣛܯ,௜  and ࣜܯ,௜  are confined to the finite set. Again, following 

Proposition 2.4, ࣛܯ,௜ and ࣜܯ,௜ are monotonically non-contracting. Therefore, after a 

finitely many iterations, both these sets converge when MSO algorithm terminates.   ▪ 

3 Experimental Results 

In this section, we describe our experimental plans, methods, and qualitative results to 
examine the accuracy of segmentation results with the MSO operator, both in isoin-
tesity and shared intensity space. Performance of the system is first evaluated on two 
different types of phantom images, 1) conjoined mathematical phantoms in iso-
intensity space, 2) CT images of a pig pulmonary vessel cast phantom with contrast 
separated A/V trees in shared intensity space. Another experiment is conducted on 
two different sets of patients’ data, i.e., 1) pulmonary non-contrast CT data for sepa-
rating arteries and veins in iso-intensity space and, 2) for complete carotid vascular 
segmentation for patient’s CTA data in shared intensity space. 

At first, four mathematical phantoms are computer-generated where each phantom 
is an assembly of two cylindrical objects running quasi-parallel across the slice direc-
tion with different geometry and varying levels of fuzziness, overlap, scale and noise. 
These phantom images were initially generated at high resolution after assigning a 
pure intensity values for the two structures. Subsequently, each of these images was 
down sampled using 3 ൈ 3 ൈ 3  window to simulate partial volume effects. Each 
down-sampled image was further degraded with additive white Gaussian noise at 
SNR of 12. Using a graphical user interface, exactly one seed point was placed for 
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each object near its center on the top-most slice at the largest-scale level. Fig. 2 shows 
that, even in the presence of significant overlap, down sampling and random  
noise, the method can separate the two conjoined structures. Note that the method of 
multi-scale opening has successfully removed the partial volume effects. 

 

 

Fig. 2. Results of application of the MSO operator on four computer-generated phantoms after 
3x3x3 down-sampling are shown. Each block shows the original phantom (left) of two mutual-
ly fused objects and the color-coded results of the separation using the multi-scale opening 
operator. 

 

Fig. 3. Results of artery/vein (A/V) separation on a pulmonary pig vessel cast phantom are 
shown. (a) Photograph of the phantom. (b) 3-D rendering of the optimum thresholding result. 
(c) 3-D rendering of the A/V separation results using the MSO algorithm. 

Results of application of the algorithm to a CT image of a pig lung cast phantom 
with different CT contrasts for arterial and venous trees are presented in Fig. 3. The 
vessel cast was scanned on a Siemens Somatom Definition Flash 128 CT scanner 
using the following protocol – 120 kV, 115 effective mAs, 1-s rotation speed, pitch 
factor: 1.0, nominal collimation: 16 mm ൈ 0.3 mm, image matrix: 512 ൈ 512 and 
(0.34 mm)2 in-plane resolution, and 0.75 mm slice thickness. Two CT intensity val-
ues ܫ୫୧୬  and ܫୟ୰୲ୣ୰୷  segmenting the background and pure artery regions were ma-
nually selected by three independent users. Therefore, the intensity range ൣܫ୫୧୬,  ୟ୰୲ୣ୰୷൧ was used as the shared intensity space. The superiority of the new MSOܫ
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operator lies in its ability to trace fine structures of individual objects despite the pres-
ence of partial voluming and intensity sharing. For this experiment, two seed voxels 
were used for arteries and another three seed voxels were used for veins using our 
custom 2D/3D graphical interface. 

 

Fig. 4. Results of applying the MSO operator on patients’ data. (top) artery/vein separation on a 
pulmonary non-contrast CT data, (bottom) carotid vessel segmentation in a patient’s CTA data. 

The effectiveness of the MSO operator has also been examined qualitatively on 
clinical pulmonary multidetector CT images. A result of application of the method 
separating pulmonary arteries/veins in a non-contrast thoracic CT image of a healthy 
subject is qualitatively illustrated in Fig. 4 (top row). The thoracic region of the pa-
tient is imaged using a Siemens Sensation 64 multidetector CT scanner at 120 kVp 
and 100 mA. The subject was scanned in feet-first supine position. The image was 
acquired at 0.75 mm slice thickness and was reconstructed with 0.5 mm slice thick-
ness and in-plane resolution. 25-30 seed points for each of the arteries and veins were 
manually selected by an expert using a 2-D-slice-display graphical interface followed 
by the application of the MSO operator. 

In case of carotid CT angiogram it is evident that carotid vasculature and soft/thin 
bones appear with similar CT intensities. In a CTA data, bone receives high intensity 
values while contrast enhanced vascular trees appear with intermediate intensity val-
ues. Although the intensity characteristics are different for bone and vascular tree, 
there is a significant overlap between the two due to the presence of partial voluming, 
noise and soft/thin bones. To evaluate the performance of the MSO operator, CTA 
data sets were collected using Siemens Somatom Sensation 16 scanner at 120 kV, 
rotation time of 0.5 second, 0.75 pitch and 0.75 mm collimation. The contrast medium 
used was 75 cc of Omipaque 300. Bone/vessels separation result using the new MSO 
operator is illustrated in Fig. 4 (bottom row). The half-skull representation displays 
the vascular structure in the context of bone geometry. 
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4 Conclusion 

In this paper, the theoretical properties of the multi-scale opening have been estab-
lished as new mathematical morphological operator. The applicability of the MSO 
operator has been validated for segmentation of two conjoined fuzzy objects having 
similar or shared intensity characteristics, which are fused at different scales and loca-
tions. The current work extends our previous work [13], [14] on artery-vein separa-
tion in 3-D non-contrast pulmonary CT imaging which was formulated as a separation 
task for two similar-intensity conjoined objects. Qualitative segmentation results of 
application of the new mathematical morphological operator to mathematical phan-
toms and artery/vein separation in a physical cast phantom of a pig lung have been 
illustrated. Elegant segmentation results have been observed from our experiments 
with the patients’ data on non-contrast pulmonary CT and cerebral CTA. High accu-
racy and reproducibility at the cost of moderate user efforts demonstrates that the new 
MSO operator is suitable for a wide range of clinical and research studies. 
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