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Abstract. We present a method for automatically detecting the tips of
fluorescently labeled mitochondria. The method is based on a Random
Forest classifier, which is trained on small patches extracted from con-
focal microscope images of U2OS human osteosarcoma cells. We then
adopt a particle tracking framework for tracking the detected tips, and
quantify the tracking accuracy on simulated data. Finally, from images
of U2OS cells, we quantify changes in mitochondrial mobility in response
to the disassembly of microtubules via treatment with Nocodazole. The
results show that our approach provides efficient tracking of the tips
of mitochondria, and that it enables the detection of disease-associated
changes in mitochondrial motility.
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1 Introduction

Mitochondria are involved in many cellular processes, and their dysfunctions
have been linked to several diseases. In particular, abnormal mitochondrial
dynamics such as an increased rate of fission, have been reported in the case
of neurodegenerative diseases (see [2]).

In order to better understand the underlying mechanisms behind abnormal
mitochondrial dynamics, it is necessary to analyze time-lapse image data from
a large number of cells. So far, studies have relied on qualitative descriptions
of mitochondrial movement [3] and manual image analysis [11], which limit the
amount of data that can be analyzed. For more detailed studies, e.g. focusing
on how interactions may affect the mobility, automatic image analysis methods
are needed.

Previously described methods for automatic quantification of mitochondrial
motion have mostly been restricted to measuring instantaneous velocity distri-
butions using e.g. Optical Flow estimation [9] among other techniques [1]. Such
methods yield no information about long-term dynamics of individual mito-
chondria. For tracking individual mitochondria, Silberberg et al. [12] applied a
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particle tracking method, consisting of the detection of mitochondria and a sub-
sequent tracking step. A limitation of their detection method is that it assumes
that the mitochondria appear globular, which is not true in general, as mito-
chondria often exhibit elongated and networked morphologies.

As mitochondria are similar in appearance to other elongated cellular struc-
tures, such as cytoskeletal filaments, when imaged with a fluorescence micro-
scope, methods for tracking such filaments should be applicable to tracking
mitochondria as well. For tracking cytoskeletal filaments, active contour tracking
methods have been used [13]. These methods have the disadvantage of requiring
the adjustment of several, non-intuitive parameters. In addition, methods for
tracking the tips of microtubules have recently been proposed [5,6], but they
rely on an initial manual detection of the tips.

In this work, we present a novel, automatic approach for detecting the tips of
mitochondria, and apply the tracking framework of [8] to track the detected tips.
Our detection method is based on supervised learning, namely a Random Forest
classifier. Previous methods for automatically detecting the tips of microtubules
[10] or mitochondria [9] have relied on segmentation, by applying filters that
enhance curvilinear structures, binarizing the filtered image via thresholding, and
extracting the tips from the morphological skeleton of the binarized image. Often
such approaches will either over- or undersegment parts of the mitochondrial
structure, which leads to false positives and misses. In contrast, directly detecting
the tips should lead to a more robust method.

Here, we present the method and its validation using synthetic data. We
also present a comparison of the method to a segmentation-based approach, and
find it more reliable. Finally, we demonstrate the applicability of the method to
experimental data, by measuring changes in mitochondrial motility caused by
treatment with Nocodazole [14,15].

2 Materials and Methods

2.1 Image Acquisition

We transfected U2OS cells with a vector expressing mitoDsRED2, a red fluores-
cent protein targeting the mitochondrial matrix. The nuclei were labeled with the
Hoechst 33342 fluorescent dye. The images were acquired with a Nikon Eclipse
Ti-E with 100x Apo, a Wallac-Perkin Elmer Ultraview spinning-disk confocal
system, Andor EMCCD camera, and a Nikon PFS autofocus system.

Prior to imaging, the cells were treated with 5µg/ml Nocodazole. We then
selected four cells to be imaged. At 0, 30, 60, 90, 120 and 180 minutes after
the application of Nocodazole, we imaged one optical slice of each cell every 3
seconds, for 10 minutes. This resulted in 6 movies of 10 minutes for each cell.

2.2 Training and Test Data

We selected one representative image of a cell not affected by Nocodazole, in
which the sizes and appearances of mitochondria varied widely. In this image,
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we manually marked 50 points at the tips of mitochondria, and extracted square
patches of size 9×9 around them; we will refer to these as positive patches. Next,
we extracted 1000 patches at random points, to serve as negative examples. This
random selection was justified, because less than 1% of the points in the image
contain tips of mitochondria. Finally, we manually marked 50 points at non-tip
locations that shared visual features with tips: points along the mitochondria
filaments, borders between two mitochondria, and curved edges of mitochondria.
Figure 1 shows examples of each of these three subsets of the training data.

Although we estimated that 50 patches suffice to cover most of the variation
in the appearance of the tips of mitochondria, as well as of the non-tip regions,
any particular appearance may be represented in few orientations. In order to
make our detector invariant to orientation, we augmented the data set with
transformed versions of each manually selected patch. In particular, we applied
each of the symmetries of a square to the patch: First, we mirrored the patch
horizontally. Second, we rotated both the original patch and its mirrored ver-
sion by 90, 180 and 270 degrees. This amounted to 7 new patches for each old
patch. The reason we selected these transformations instead of, e.g., rotations of
arbitrary angles, is that they require no interpolation, and thus do not introduce
artifacts to the patch.

After extracting the training data, we further manually extracted 25 positive
and 25 negative patches to serve as test data.

2.3 Detecting the Tips of Mitochondria Using a Random Forest
Classifier

Our detection method works by classifying each sub-patch of the image in a
sliding window, using a binary Random Forest (RF) classifier. As features for
the classifier, we use the pixel values of the patches, read in column-major order,
and normalized to zero mean and unit variance, in order to achieve invariance
to intensity scaling. That is, for an image patch Pk = {pij}, where i ∈ 1..9
and j ∈ 1..9 are the row and column indices, respectively, the corresponding
unnormalized feature vector is

xk = [p11, p21, . . . , p91, p12, p22, . . . , p19, p29, . . . p99] , (1)

and the final, normalized feature vector is obtained as

yk =
xk − 〈xk〉

std(x − 〈xk〉) , (2)

where 〈·〉 denotes the sample mean, std denotes the sample standard deviation.
This detection procedure results in a binary image, where each connected

component (CC) corresponds to one tip of a mitochondrion. However, the image
will also contain some CCs that are false positive detections. We verified by
visual inspection that these are typically small, approximately 1 − 2 pixels in
size. Noting that there is some uncertainty to the exact location of a manually
marked tip, true positive CCs should contain more pixels in the tip region.
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Fig. 1. Panel A shows the image from which the training data was extracted. The mark-
ers denote different types of training samples: manually picked positive samples (orange
circles), manually picked negative samples (green triangles) and randomly selected neg-
ative samples (blue squares). The corresponding patches are visualized in panels B, C
and D, where the colors and shapes correspond to the training sample types in panel A.

This is evident from the example classification results shown in Figure 2. Thus,
as a post-processing step, we remove connected components that contain less
than 3 pixels.

From the remaining CCs, we compute the centroids, which we use as the
estimates of the tip locations. Examples of the final detection results are shown
in Figure 2C.

2.4 Tracking

For tracking, we adopted the framework of [8], and used the authors’ publicly
available MATLAB implementation. In short, the method constructs tracks for
detected objects in two steps: First, in each pair of subsequent frames, the objects
are linked by solving a Linear Assignment Problem (LAP). If an object disap-
pears temporarily, this procedure results in track segments instead of a complete
track. Thus, as a second step, another LAP is solved to link track segments from
the first step. A more detailed description of the method can be found in [8].

2.5 Generation of Synthetic Image Data

In order to test the performance of the method quantitatively, we needed movies
for which the ground-truth location of each tip is known in each frame. To this
end, we generated movies with simulated mitochondria. The advantages of using
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Fig. 2. A. Cropped region of a test image. B. Classification result. C. Tip locations
(white crosses) detected as centroids of the connected components in B.

simulated images over manually-analyzed real images are that the ground-truth
locations are free from human error, and that all parameters of the simulation
can be varied to produce diverse test data.

To generate these synthetic movies, we modeled mitochondria as cubic
splines, and subjected them to both brownian-like “wiggling” motion, and trans-
lation by applying a single random displacement vector to all control points of a
mitochondrion. To simulate the wiggling, we first generated a random displace-
ment vector for each control point. We then averaged the displacement vectors
of nearby control points, in order to restrict the movements of the mitochondrial
filaments to a realistic level of rigidity. To simulate the flat morphology of the
U2OS cells, the distances moved by the mitochondria in the z-dimension were
on average 1% of the distances they moved in the x- and y-dimensions.

The imaging process was modeled as follows: first, we rasterized the splines.
To the resulting three-dimensional binary image, we added Poisson noise in
order to generate variability in intensity inside the mitochondria filaments. Next,
we convolved the noisy image with a Gaussian approximation of a fluorescence
microscope point-spread-function. Finally, we added Gaussian noise to the image
to simulate noise from the imaging system. Figure 3 shows example frames from
one synthetic movie, as well as the locations of the true and detected tips.

3 Results

3.1 Performance of Tip Detection

For the RF, we trained 50 trees, and the number of features per split was selected
to be 8. The latter parameter was selected using cross validation, by maximizing
the area-under-ROC-curve. On the test data set, the classifier correctly classified
20/25(80%) of the positive examples, and 24/25(96%) of the negative examples.

We also compared the detection performance to that of a previous approach
[9] based on segmentation. Briefly, the alternative method, here referred to as
SEG, finds tips in 3 steps: first, it applies a median filter and a morphological
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Fig. 3. A. Frames 0, 10, 20, 30 and 40 from a synthetic movie. B. The same frames
with ground truth points (black crosses) and detected tips (white circles) overlaid.

top-hat filter to the image, to enhance the mitochondria structures. Next, it
segments the image via Otsu’s thresholding. Finally, it applies morphological
thinning to find the morphological skeleton, from which the tips can be uniquely
identified.

The methods were compared by generating 11 synthetic images, each con-
taining approximately 20 tips, and comparing the locations of the detected tips
to the ground truth tip locations. Specifically, the detected tips were paired
with the ground truth tips via a Linear Assignment Problem (LAP); pairings
were only made when the distance between the points was less than X pixels
– points lacking such a real pair were paired with dummy points in the LAP.
From the pairings, we obtained false positives as unpaired detections, true pos-
itives as paired detections, and false negatives as unpaired ground truth points.
From these, we computed the true positive rate (TPR) and positive predictive
value (PPV), and the F1-score defined as the harmonic mean of PPV and TPR.
The results for both methods are shown in Table 1. The proposed method had
only a slightly smaller TPR compared to SEG, but a significantly larger PPV.
Consequently, the proposed method also yielded a larger F1-score.

Table 1. Detection performance of proposed method and alternative method (SEG)
on synthetic images

Proposed SEG

TPR 0.91 0.92
PPV 0.89 0.79
F1 0.90 0.85
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3.2 Accuracy of Tracking

For validating the method, we generated 11 synthetic movies of 101 frames each,
and stored the locations of the mitochondrial tips, to serve as the ground truth
data. We quantified the tracking accuracy on the synthetic data using a similar
approach to [4]: we paired each ground truth track with a hypothesis track gen-
erated by the tracking method. This was done via solving a Linear Assignment
Problem (LAP), where the cost c of each pairing is defined as

c(g, h) =
∑

i∈G∩H

min(||gi − hi||2, dmax) + |G � H| · dmax (3)

Here, we used the following definitions: | · | denotes set cardinality, and �
is the symmetric difference between sets. We defined dmax = 2 pixels to be the
maximum distance between a ground truth point and a hypothesis point at which
we can consider a point detected. G and H are sets that contain the indices of
the movie frames in which a ground truth track and the paired hypothesis track
are present (the former corresponding to frames where the object is visible, i.e.
in focus), g and h are ground truth and hypothesis tracks, and the track points
in frame i are denoted by gi and hi.

The effect of the latter summand in Eq. 3 is to increment c by dmax for all
ground truth points that do not have a matching hypothesis point (misses), and
all the hypothesis points that do not have a matching ground truth point (false
detections). In the solution of the LAP, a pairing was not allowed between tracks
that had no points less than dmax pixels apart; unpaired tracks were handled by
assigning them to dummy elements in the LAP.

From the paired tracks, we wanted to answer the following questions: How
likely is a hypothesis track to be paired with a ground truth track? Also, how
likely is a true object track to be detected by the tracking method? To address
these questions, we defined the following error measures, which were calculated
over all the tracks in the data set:

E1 = 1 − #{hypothesis tracks paired with a ground truth track}
#{hypothesis tracks} (4)

E2 = 1 − #{ground truth tracks paired with a hypothesis track}
#{ground truth tracks} . (5)

In addition, we wanted to quantify the quality of the detected tracks. To this
end, we asked: in a correctly detected true track, how likely is a point to be
missed or assigned to the wrong object? For this, we calculated the following:

E3 =
∑

i∈G I(i /∈ H)
|G| (6)

E4 =
|H \ G| +

∑
i∈G∩H I(||gi − hi||2 > dmax)

|H| . (7)
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Here, I denotes the indicator function. The quantity E3 measures the fraction of
ground truth points that were missed, and E4 measures the fraction of hypothesis
points that were assigned to a wrong object.

The results from the experiment were as follows: E1, 0.09; E2, 0.29; E3, 0.4
and E4, 0.09. Thus, 9% of the hypothesis tracks were not paired; 29% of the
true tracks were not detected; 40% of the ground truth points were missed; and
9% of the hypothesis points were assigned to a wrong object. We confirmed by
visual inspection that the high values for E2 and E3 were largely due to failures
of the detection method. Another source of missed points was that some track
segments were not linked by the tracking method.

3.3 Quantification of Mitochondrial Motion in U2OS Cells

After validating the method on synthetic data, we tested whether it can quantify
changes in mitochondrial movement caused by Nocodazole, which causes the
depolymerization of microtubules (see e.g. [14]). Since intracellular transport of
mitochondria occurs, at least to some extent, along microtubules (see [7]), the
application of Nocodazole should result in reduced mobility of mitochondria.
Such a reduction in mobility has been observed in various cell types [14,15]. We
can quantify this effect with the proposed method.

To this end, we computed the mean speed for each track as the mean dis-
placement between movie frames. Figure 4 shows the distributions of the mean
speeds in each cell, for the first and the last movie, and the medians of these dis-
tributions in all movies. Between the first and the last movie, the median speed
has decreased by 14–44%, with the difference being statistically significant for
each cell (P < 0.01, Wilcoxon rank-sum test, N=416–755).

4 Discussion

With the ongoing development of live, single-cell time-lapse imaging techniques,
the objective analysis of the kinetics of mitochondria is expected to play a signif-
icant role in the detection of mitochondria-related diseases, among other. This
will require the use of image analysis tools capable of automatic detection and
tracking mitochondria.

We demonstrated that our method can detect the tips of fluorescently labeled
mitochondria with reasonable accuracy. In addition, we showed that the direct
detection of tips using the new method results in fewer false positives than a
segmentation-based approach, as indicated by the higher PPV.

In our tests with synthetic data, we found that the detection and tracking
approach proposed here tends to result in incomplete tracks, as well as com-
pletely missed tracks. This is in part due to some tips being missed by the
detection method, and also due to the tracking method sometimes failing to
link track segments. Still, as long as the application does not require complete
tracks, or unique tracks for each object, the method produces reliable results in
this regard.
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Fig. 4. Left: normalized histograms of mean speeds for cells 1-3 (top to bottom). The
solid and dashed lines correspond to the movies captured 0 minutes and 180 minutes
after application of Nocodazole, respectively. Right: medians of mean speeds for cells
1 (circles), 2 (squares) and 3 (triangles); each data point corresponds to one movie.

The results also showed that, for a correctly identified track, although many
points will be missed (relating to the aforementioned issues), the tracks con-
sist mainly of correctly identified points. This, along with the previous result,
suggests that the method’s results can be trusted.

Finally, by applying the method to images of U2OS cells treated with Noco-
dazole, we detected a decrease in mitochondrial motility in all cells; this result
is consistent with previous studies [14,15].

For a more complete characterization of mitochondrial dynamics, it would be
useful to keep track of not only the tips, but the whole mitochondrial filaments.
This should be feasible by, for example, coupling the present method with an
active contour segmentation method.

Finally, we expect our approach to be applicable to tracking other subcellu-
lar structures with similar shapes, such as microtubules and other cytoskeletal
filaments, as well.
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