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Abstract. Background subtraction is a fundamental pre-processing step
for many computer vision applications. In addition to cope with dynamic
background scenes, bad weather conditions such as rainy or snowy envi-
ronments and global illumination conditions such as light switch on/off
are still major challenging problems. Traditional state of the art methods,
such as Robust Principal Component Analysis fail to deliver promising
results under these worst conditions. This is due to the lack of global pre-
processing or post-processing steps, incorrect low-dimensional subspace
basis called low-rank matrix estimation, and memory or computational
complexities for processing high dimensional data and hence the sys-
tem does not perform an accurate foreground segmentation. To handle
these challenges, this paper presents an input video denoising strategy
to cope noisy videos in rainy or snowy conditions. A real time Active
Random Field constraint is exploited using probabilistic spatial neigh-
borhood system for image denoising. After that, Online Robust Prin-
cipal Component Analysis is used to separate the low-rank and sparse
component from denoised frames. In addition, a color transfer function
is employed between the low-rank and the denoised image for handling
abruptly changing lighting conditions, which is a very useful technique for
surveillance agents to handle the night time videos. Experimental evalu-
ations, under bad weather conditions using two challenging datasets such
as I-LIDS and Change Detection 2014, demonstrate the effectiveness of
the proposed method as compared to the existing approaches.

1 Introduction

Video background modeling and subtraction is a very crucial step in many
image processing applications such as video registration, inpainting, compres-
sion and segmentation [1]. This pre-processing step consists of segmenting the
moving foreground objects from the static scene called “background”. But exis-
tence of undesirable weather conditions such as rain, fog, snow or haze is still
major challenge for many applications, in addition to bootstrapping and dynamic
background subtraction issues, which may cause performance problems in visual
surveillance systems.
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A number of interesting frameworks have been developed to tackle the
problems of background subtraction in videos [2] and several implementa-
tions are available in BGS! and LRS? libraries. Robust Principal Component
Analysis (RPCA) based low-rank matrix decomposition algorithms using Prin-
cipal Component Pursuit (PCP) provide encouraging performance for back-
ground/foreground separation [2]. RPCA decomposes the original data matrix,
as a sum of low-dimensional subspace having intrinsic structure called low-rank
matrix (corresponds to the background) and correlated outliers called sparse
component (constitutes the foreground objects). For example, 15 row in Fig. 1
shows an example of background subtraction using RPCA of original image taken
from I-LIDS dataset [3].

However, due to the batch optimization processing and partial SVD com-
putation at each major loop, RPCA suffers from memory and computational
complexities and hence the low-rank matrix can not be estimated correctly due
to the lack of constraints. Moreover, earlier RPCA methods also do not provide
satisfactory performance under bad weather conditions as depicted in the 27¢
and 3" rows of Fig. 1 of sequences taken from I-LIDS [3] and Change Detection
(CDnet) 2014 dataset [4].

In order to tackle these challenges, this paper presents a robust background
subtraction algorithm via Online Robust PCA (OR-PCA) on denoised video
frames (noise free). We briefly explain our methodology here. First, the contin-
uous constraints such as Active Random Field (ARF) based on the combination
of Markov Random Field (MRF) and Conditional Random Field (CRF), are
employed on noisy or rainy video frames. Then, OR-PCA is applied on denoised
images for background modeling. Since ARF based image denoising technique
provides encourging results against noisy pixels. Therefore, our methodology
improves the quality of foreground via OR-PCA under mild weather environ-
ments. Moreover, without detecting the global illumination conditions, a color
transfer function is used between the source and input image to maintain the
abruptly changing lighting conditions of current frame when the light switch is
turned off. It can be a useful functionality for surveillance agents to select the
color transfer option for night time surveillance or illumination changing con-
ditions. Finally, a very nice comparison of ARF based background subtraction
with other methodologies is presented in detail.

The rest of this paper is organized as follows. In Section 2, the related work
is reviewed. Section 3 describes our methodology in detail. Experimental results
are discussed in Section 4. Finally, conclusions are drawn in Section 5.

2 Related Work

In the literature, a number of encouraging methods have been proposed for
robust background subtraction. Due to the over growing demand of processing
high dimensional data, subspace learning models such as RPCA [5] attract a

! https://github.com/andrewssobral /bgslibrary
2 https://github.com/andrewssobral /Irslibrary
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(d)

Fig. 1. An example of background subtraction using RPCA. From left to right: (a)
input, (b) low-rank, (c) sparse component, and (d) foreground mask. From top to
bottom: non-noisy, rainy, and snowy scene.

lot of attention. Excellent surveys on background modeling using RPCA can be
found in [2]. All these RPCA approaches discussed in [2] work according to batch
optimization and therefore they are not applicable for real-time systems.

In contrast, Feng and Xu [6] proposed OR-PCA that alleviates most of the
ealier RPCA limitations. OR-PCA processes one frame per time instance via
online (also called iterative or stochastic) optimization. In [6], it is argued that
OR-PCA converges to the optimal solution and achieves the comparative perfor-
mance as compared to its batch counterparts. However, no encouraging results
over video background subtraction are reported. Therefore, S. Javed et. al [7]
modified OR-PCA [6] for background/foreground segmentation. A number of
encouraging results are presented in [7]. But annoying parameters tuning is the
main drawback in their approach.

All these RPCA methods discussed above perform the low-rank recovery
which is robust to sparse corruptions but it gets fail to handle worst weather
conditions such as rainy or snowy. To address rain removal from videos using
RPCA, A. Hakim [8] proposed a novel framework for rainy video restoration
using exact low-rank recovery, but the system performance was degraded as the
hard constraints were applied in the low-rank part, which is not useful for online
processing. In this study, we propose an integrated framework based on ARF
for image denoising, and OR-PCA along with color transfer scheme for robust
background subtraction of noisy image sequences.

3 Proposed Approach

In this section, we discuss our scheme for background subtraction of noisy videos
in detail. Our methodology consists of several components which are described
as a system diagram in Fig. 2.
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Fig. 2. Block diagram of our proposed scheme

Our methodology consists of three main stages: ARF, background subtrac-
tion, and color transfer function. In this work, instead of applying any mild con-
straints on low-rank component, we first denoise the input video frames using the
continuous ARF, and then, OR-PCA [7] is applied on filtered frames to get the
improved foreground segmentation. To handle the global illumination conditions,
we use the color transfer scheme for illumination stability without detecting the
global changes in a scene. We propose an integrated framework for both bad
weather conditions and night time surveillance or abruptly changing lighting
conditions . One very useful benefit of our approach is that, the surveillance
agent is able to select the color transfer function for night time surveillance. In
addition, a very effective comparison is presented in detail with earlier methods
using ARF based initialization, and we show that ARF with OR-PCA provides
the best results. In the following sections, we will describe each module in detail.

3.1 Real Time Acive Random Field (ARF) for Image Denoising

In this work, the rain/snow filtering problem is analyzed using input video
restoration method. The original video frame, say Z;, is assumed to be three
dimensional e.g., width X height x color, at a time ¢. This noise free input frame
is then corrupted by some noise (rain/snow drops) represented by y;. The main
goal is to restore this original frame using the continuous constraints like ARF,
and then, the background subtraction is performed for improved foreground
detection.

The ARF [9,10] model is a combination of probabilistic MRF/CRF model
which shows a very nice potential for many computer vision applications such as
image segmentation, denoising and stereo disparity using the Fields of Experts
MRF model [11] and simple gradient descent inference algorithm. In [9], a very
interesting real time image denoising application is proposed.

The main idea of ARF model is that, through an appropriate training of
MRF/CRF prior model, and a fast inference algorithm with an optimization of
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SHCPCR_FoCoR

Fig. 3. ARF based image denoising. From left to right: (a) input, and denoised image
using (b) o =10, (¢) o0 =15, (d) 0 = 20, (e) o = 25, and (f) o = 50, respectively.

loss function on a given image, the model perform very well for image denoising
on a suboptimal inference algorithm. In this work, rainy video is denoised or
restored by exploiting the ARF information with the same training data used
in [9,10].

Let each pixel be a node in a directed graph G = (V, E), where a set of
vertices V' stands for all pixels in the image and a set of edges E denotes 4-
connected spatially neighboring pixels. Let C be a set of cliques of G which
is fully connected subgraphs. Then, the main goal is to recover an image x;
which is both smooth and close to y; using the gradient descent having energy
minimization function given by

Ext = Edata(xt) + EFOE(mt; 9)7 (1)

where the term FEgquq(2:) is a cost function for assigning labels to x; and is
given by

Edata xt 2 5.2 Z - xt ) (2)

where xi and yg is the value of pixel j of image x; and ¥, and o is a smoothing
factor. Similarly Frog(data) is the energy of Fields of Experts which is an
MRF prior model having convolution kernels called filters as J¢, f = 1,...., N
with corresponding coefficients o¢, which is given by

Erog(zt,0 ZZO‘f log(1+ 3 (szt) ), 3)

J f=1

where ; is the sum over the cliques k of the denoised image z; and ¥ are
the corresponding pixels of clique k. Solving (1) takes thousands of iterations,
which is really a hard task for real time systems. A. Barbu [9] designed a loss
function with its online optimization available in his homepage?, and it normally
takes less than a second with four iterations to minimize the energy function and
hence applicable for real-time processing. Fig. 3 (b) to (f) show the ARF based
denoised images taken from CDnet [4] with different values of o. This o value
in Fig. 3 (b) to (f) makes the smoothed restored images using the same training
data used in [9,10].

3 http://www.stat.fsu.edu/abarbu/ARF /index.html
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3.2 Background Subtraction

In this paper, OR-PCA [6] is applied on each denoised video frame for robust
low-rank and sparse error separation. OR-PCA basically decomposes the nuclear
norm of the objective function of the traditional PCP algorithms into an explicit
product of two matrices, i.e., the basis and coefficient.

In [6], an iterative or stochastic optimization scheme is designed for OR-PCA
and it is proved that the method converges to the global optimal solution of the
original PCP formulation. OR-PCA can be formulated as

1
min ~ID - LRT — E||?
pemetin I3
A1

T3

(Z1% + |1RI%) +A2|E||1}7 (4)

where D is the column-vector of denoised images e.g., D € RP*", p is the number

of pixels with three color features, e.g. (width x height x 3), n denotes the
number of samples (video frames), d is a rank, L is the optimum basis of each
individual color channel, R is a basis coeflicient, and E is a sparse error. \;
controls the basis and coefficients for low-rank matrix, whereas Ao controls the
sparsity pattern, which can be tuned according to video analysis. In addition,
basis and coefficients depend on the value of rank r, which is tuned carefully to
speed up the stochastic optimization process.

In particular, the OR-PCA optimization consists of two iterative updating
components. First, every incoming restored image is projected onto current ini-
tialized basis L and we separate the sparse noise component, which includes the
outliers contamination. Then, the basis L is updated with a new denoised color
image individually. More details can be found in [6].

The background sequence for each image is then modeled by a multiple of
basis L and its coefficient R, e.g., X = LRT, whereas the sparse component E
for each image constitutes the foreground objects which is then thresholded to
get the binary mask using hard thresholding scheme.

3.3 Color Transfer Method

The low-rank component is not always consistent and needs to be updated at a
time t, especially for abruptly changing lighting conditions, such as turning off
the light switched in indorr scenes. The surveillance system always show a very
weak performance due to rapid lighting variations.

Many approaches have been developed to detect change of global illumination
conditions such as in [12]. However, the delay always arise when the new pixels
are updated which is the main drawback in earlier approaches. Color transfer
between images has shown to be a very efficient strategy, initially developed
for computer graphics applications [13,14] to transfer the desired colors into an
input image.
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In this work, we transfer the color between the low-rank and input denoised
images, without detecting the intense lighting variations, and this can be done
by taking the bright colors from low-rank matrix, and then, transform the color
map of the input video sequence. The OR-PCA is then employed on enhanced
video sequence for improved foreground segmentation. This color transfer scheme
is very important especially for night time surveillance, when a bright day time
low-rank scene is computed online using OR-PCA, and then, it is used to trans-
form the colormap of the night time scene for video enhancement. However, we
have not stored any bright time low-rank scene in this study, but a series of
these images can be stored if not available during night time surveillance, and
then, the weighted low-rank component which can be computed using the linear
combinations of these images, can be adopted as a source image for color transfer
function.

E. Reinhard et. al [14] proposed a very efficient and simple color transfer
algorithm using decorrelated color space between the source and target image.
Let say that Iy and I; be an RGB source (low-rank component obtained from
OR-PCA) and target image (current denoised video frame).

The Iy and I; images are first converted into la3 color space using the for-
mulation presented in [14]. Then, ;a0 and l;a8; are each source and target
laB color spaces after conversion. Next, the mean value is subtracted from each
individual axis and standard deviation is divided from the source image with a
multiple of enahanced source la3 axis. The standard deviation of each I; axis is
added separately, and finally the enhanced l/o/ﬁl space is then converted back
into the RGB color space after the color transfer function given by

, O’Z , oo , Oﬁ

I = ;Zl* +pe, 0 = éa* + Hat, B = éﬁ* + pgt (5)
where I* = I, — s, @ = a5 — llo,s and B* = B; — ug,s. Similary the p and o
are the mean value and standard deviations of each source and target laf axis
in (5). More details can be found in [14]. Fig. 4 (a) to (e) show the enhanced
video results using ARF with color transfer scheme for improved background
subtraction. The average RGB pixel is also computed for evaluation purpose
and Fig. 4 (f) depicts that the color transfer video has more stable illumination
condition.

4 Experimental Evaluations

In this section, experimental results are reported for bad weather conditions and
night videos category, taken from the two well-known challenging datasets such
as CDnet [4] 2014 and I-LIDS [3] dataset.

We have also evaluated and studied several state of the art approaches by
integrating ARF with Mixture of Gaussians [15] (ARF-MOG), PBAS [16] (ARF-
PBAS), Codebook [17] (ARF-CB) and some recent methods, e.g., FTSG [18], Bin
Wang Apr [1], and MSTB model [19] with results publicly available in CDnet*.

* http://www.changedetection.net/


http://www.changedetection.net/

Combining ARF and OR-PCA for Robust Background Subtraction 347

N
[$))
o

‘ ——0Original Video — Proposed Method ‘

a
o
o

50

Average RGB Value

00 1000 1500
Number of Frames

(f)

Fig. 4. Color transfer between low-rank and input denoised image. From left to right:
(a) input, (b) low-rank, (c) binary mask without color conversion, (d) video sequence
using color conversion, (e) foreground mask with color conversion, and (f) comparison
of RGB pixel values between original and restored video using color transfer function

We use the parameters in (4) as d = 6, Ay = 0.01, \y = 0.05, and ¢ = 20
for ARF video denoising. First the qualitative results are presented, and then,
quantitative study is described in details.

4.1 Qualitative Results

The visual results are presented on some selected video sequences from each
dataset due to the space limitations . The proposed approach is implemented on
Matlab R2013a with 3.40 GHz Intel core i5 processor and 4 GB RAM. Morever,
a 5x5 median filtering is applied on binary mask.

CDnet [4] 2014 is a well-known real-time challenging dataset, which contains
the category called Bad weather condition and Night videos. The 1%¢ category
contains 4 major video sequences called Blizzard, Skating, Snow fall, and Wet
snow. The 2™ one consists of 6 videos, but only two sequences called Bridge
entry and Tram station are presented. In this dataset, the Night videos do not
contain any day time scene so we directly apply our approach without color
transfer sheme. The image size of 1% category is 720 x 480, whereas the other
videos contain 540 x 360 and 720 x 540 frame sizes, and half of the resolution is
used in our experiments.

We have also tested some non-noisy videos under stable illumination condi-
tion from CDnet dataset [4] using the Baseline category. This category contains
4 basic videos namely: Highway, Office, Pedestrians, and PETS2006. These non-
noisy sequences that contain stable lighting condition are also pre-processed
using the ARF constraints, and then, the background subtraction is performed.
Due to the denoised non-noisy images satisfactory smoothing properties, a small
moving pixels are suppressed that eradicates most of the false alarms from the
binary mask. However, the color transfer scheme has no affect in this case, since
the source image i.e., the low-rank component and denoised non-noisy image con-
tains the same bright scene. Fig. 5 (a) to (d), show the results on Bad Weather
Condition videos, whereas the visual results of Night Videos are shown in Fig. 5
(e) to (f). In addition, the results on Baseline video sequences are also reported

in Fig. 5 (g) to (j).
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(a) (b) (c) (d) (h)
Fig. 5. Results of the proposed method. From left to right: (a)-(d) Bad Weather videos:
(a) Blizzard, (b) Skating, (c) Snow fall, and (d) Wet snow. (e)-(f) Night videos: (e)
Bridge entry, and (f) Tram station. (g)-(j) Baseline category: (g) Highway, (h) Office,
(i) Pesdestrians, and (j) Pets2006. From top to bottom: input, ground truth, and our
results.

I-LIDS [3] is the Imagery Library for Intelligent Detection Systems dataset
which consists of about 213 video sequences. Among them, the category
SZTRA104b contains 10 videos of worst weather environment. The image size
of each sequence is 576 x 720. Fig. 6 depicts the visual results of 5 sequences
using I-LIDS dataset.

Fig.6. I-LIDS category SZTRA104b. From left to right: (a) SZTRA104b01, (b)
SZTRA104b04, (c) SZTRA104b06, (d) SZTRA104b08, and (e) SZTRA104b09. From
top to bottom: input and results of our method.

4.2 Quantitative Results

For quantitative evaluations, we have computed the F-measure score for all
sequences, by comparing our results with their available corresponding ground
truth data. The F-measure is given as

2 x Recall x Precision

Fn sure = T ) 6
reasure Recall + Precision )

where Recall and Precision are computed based on true positives, false
positives, and false negatives. CDnet [4] is quantitatively evaluated according
to this criteria by comparing our results with available ground truth image of
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each sequence. However, I-LIDS dataset is evaluated according to the process
described in [3] as the ground truth images are not available.

According to I-LIDS evaluation process, any alarm events presented in the
first 5 minutes will be ignored and it will not effect the system performance.
The detection is performed, which is compared with its ground truth data to
generate the number of true positives, false positives, and false negative alarms.
The detailed evaluation process can be found in [3].

Table 1, 2, and 3 show the performance of our proposed method using
CDnet [4] and I-LIDS [3] dataset as compared to other approaches. In Table 1
and 2, our method outperforms in Bad Weather and Night video sequences,
as compared with the state of the art algorithms. However, a comparative per-
formance is observed for simple cases such as Baseline category in table. 1.
Moreover, the F-measure score in Table 1 and 2, depicts that we are the 4"
top best performer in Bad Weather and Night videos category, according to the
online results reported in CDnet [4] website.

Time comlexity is also observed during our evaluations. The time is recorded
in CPU time as [hh : mm : ss] and we have [00 : 00 : 56] for the first 100 frames
having image resolution of 576 x 720. Since RPCA methods are not stable to
process high dimensional data or they take longer time, which is not useful for
real-time systems. In this study, we have achieved almost a real-time process-
ing, in addition smoothing or suppressing the snow pixels using ARF constraints
improved the background subtraction results. These good experimental evalu-
ations are the evidence of introducing a real-time image denoising constraints
together with OR-PCA.

Table 1. Qualitative results of CDnet dataset [4]: Average F-measure score of each
video sequence with earlier approaches.

Method Change Detection dataset [4]

Bad Weather Average Baseline Average
Blizzard|Skating|SnowFall| WetSnow Highway| Office [Pedestrains|PETS2006
ARF-MOG [15] 0.7532 | 0.7020 | 0.7899 | 0.7154 | 0.7406 | 0.7741 | 0.3260 0.7120 0.4566 0.5671
ARF-PBAS [16] 0.8020 | 0.7230 | 0.7555 | 0.7564 | 0.7573 | 0.8266 | 0.2855 0.7562 0.6822 0.6376

ARF-CB [17] 0.7564 | 0.7860 | 0.7966 | 0.7852 | 0.7810 | 0.8056 | 0.7120 | 0.7751 0.7789 [ 0.7679

FTSG [18] 0.8503 |0.9147| 0.8197 | 0.7066 | 0.8228 | 0.9446 |0.9338| 0.9323 0.9212 |0.9330
Bin Wang Apr [1] [ 0.7177 [0.9103 ] 0.7874 | 0.6538 [ 0.7673 | 0.9452 [0.7863] 0.9250 0.8688 | 0.8813
MSTBM Model [19]| 0.7136 | 0.5862 | 0.7141 | 0.5343 | 0.6370 | 0.9535 | 0.7541 0.8709 0.8017 | 0.8450
Ours 0.8496 | 0.7880 | 0.8913 | 0.8502 |[0.8447| 0.9166 | 0.8850 | 0.9010 0.8230 | 0.8814

Table 2. Qualitative results of CDnet [4]: Average F-measure score of each video
sequence with earlier approaches.

Method Change Detection dataset [4]

Night Videos Average
BridgeEntry |BussyBoulvard|FluidHighway|StreetCorner AtNight| TramStation| WinterStreet

ARF-MOG [15] 0.3460 0.3792 0.3987 0.4063 0.3860 0.4420 0.3960
ARF-PBAS [16] 0.4222 0.346 0.442 0.4063 0.412 0.4677 0.4160
ARF-CB [17] 0.3445 0.2930 0.3555 0.3111 0.2890 0.4599 0.3421
FTSG [18] 0.4213 0.3457 0.4169 0.5897 0.7017 0.6030 0.5130
Bin Wang Apr [1] 0.1806 0.3508 0.1924 0.4971 0.5909 0.4032 0.3802
MSTBM Model [19] 0.0256 0.3308 0.5045 0.2911 0.6443 0.5049 0.4164
Ours 0.4758 0.3916 0.3575 0.5601 0.8499 0.4944 0.5215
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Table 3. Qualitative results of I-LIDS dataset [3]: Average F-measure score of each
video sequence with earlier approaches.

Method I-LIDS dataset [3]
SZTRA104b Average
01 02 03 04 05 06 07 08 09 10

ARF-MOG [15] [0.5602]0.7452]0.6022]0.7145 [ 0.6233 [ 0.4856 | 0.7566 [ 0.7784 [ 0.7968 [ 0.7475 | 0.6856
ARF-PBAS [16] [0.6032]0.812270.7466 [ 0.7630 [ 0.5820 [ 0.5560 [ 0.7720 [ 0.7120 [ 0.7502 [ 0.7030 | 0.7062

ARF-CB [17] 0.8030 | 0.7820 | 0.7136 | 0.7820 | 0.7030 | 0.7844 | 0.8032 | 0.8430 | 0.8530 | 0.8830 | 0.7950
FTSG [18] 0.8460 | 0.8010 | 0.7563 | 0.7760 | 0.7065 | 0.7936 | 0.8230 | 0.8566 | 0.7930 | 0.8030 | 0.8125

Bin Wang Apr [1] [0.6450 [0.7720]0.6630 | 0.8030 [ 0.6460 | 0.8530 | 0.7256 | 0.7964 | 0.7460 [ 0.7974 | 0.7447
MSTBM Model [19][0.748810.8770 [ 0.5633 | 0.7489 [ 0.7687 [ 0.7861 [0.8156]0.8888] 0.8654 | 0.9025 | 0.8087
Ours 0.8632|0.9120|0.8931[0.8560|0.8870|0.8752| 0.8065 | 0.8668 |0.9450/0.9380| 0.8842

5 Conclusion

In this paper, an integrated framework for improved background subtraction is
presented using real time continuous constraints ARF together with OR-PCA.
Basically, the proposed scheme is divided into two stages. The first part shows the
robustness against intensive weather situations such as snow or rain, whereas in
the second stage, where day time scene is our assumption, which is very advanta-
geous for the night time surveillance agents to choose it for monitoring different
activities. However, we just performed small evaluations on color transfer strat-
egy due to unavailability of datasets. Therefore, our future work is mainly focus
on a more robust color transfer technique which is independent of day time
bright scene and this work will be further extended for moving camera case.
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