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Abstract. Non-Local Means (NLM) is a powerful but computationally
expensive image denoising algorithm, which estimates a noiseless pixel
as a weighted average across a large surrounding region whereby pix-
els centered at more similar patches are given higher weights. In this
paper, we propose a method aimed at improving the computational effi-
ciency of NLM by quick pre-selection of dissimilar patches thanks to a
rapidly computable upper bound of the weighting function. Unlike pre-
vious approaches, our technique mathematically guarantees all highly
correlated patches to be accounted for while discarding dissimilar ones,
this providing not only faster speed but improved denoising too.
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1 Introduction and Related Work

Image denoising is a recurrent topic in image processing research due to the
ubiquitous presence of noise in the image formation and acquisition process.
Research on effective image denoising algorithms has brought a wealth of meth-
ods (see [2],[4] for a review). Among the several proposals, Non-Local Means
(NLM) [2] has demonstrated remarkable effectiveness even in presence of high
noise levels. With NLM, a noiseless pixel is estimated by averaging across image
positions so that pixels centered at highly correlated patches contribute more.
This conceptually simple and effective approach comes at the cost of a huge
computational complexity, which is theoretically O(n2r2p), n being the number
of pixels in the image and rp the size of the side of the adopted squared patch.
Therefore, the search for correlated patches is limited in practice to a squared
surrounding search area of size rs, the computational complexity decreasing to
O(nr2sr2p) accordingly.

Several algorithms aimed at speeding up NLM have been proposed in lit-
erature. In [8], a pre-selection of contributing neighboring pixels is carried out
by computing each patch’s average value and gradients. In [1] candidate pre-
selection is accomplished by arranging the data in a cluster tree where each
leaf node is constrained to a minimum size, so that each pixel can be weighted
with a relatively large subset of similar patches. The method in [13] proposes to
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estimate probabilistically the dissimilarity between two patches out of a small
portion of the distance function in order to terminate the computation early
for highly uncorrelated patches. On completely different grounds, [11] uses PCA
to project the set of neighboring candidates onto a lower dimensional subspace,
thus reducing the computational burden by computing distances in the sub-
space rather than at full dimensionality. A fast approximated scheme based on
a multi-resolution computation of the NLM weights is proposed in [5]. Finally,
in [7] the computation of the distance is carried out in the Fourier domain to
achieve improved efficiency when the patch size and search area size are different
enough [6].

One drawback associated with methods based on quick pre-selection of mis-
matching image positions such as [8],[1],[13] is that they might also eliminate
useful (i.e. highly correlated) candidates, thus implying computational savings
to be achieved at the expense of some deterioration of the final result: e.g., in
[8], a high difference in mean intensity and gradient orientation between two
patches does not guarantee that their distance is always high. In our approach,
instead, we aim at selecting mismatching candidates while at the same time
guaranteeing that all highly correlated image positions are included in the final
averaging operation. This is made possible thanks to the deployment of an effi-
ciently computable lower bound of the dissimilarity function used in the NLM
weight formulation. Moreover, discarding candidates that are guaranteed to lie
- patchwise - far away from the current pixel tends not only to speed-up the
computation but also to improve the accuracy of the denoising process. Another
advantage of the proposed technique is that the minimum guaranteed correlation
between two patches is an explicit parameter which can be easily set by the user
so as to lean towards either higher speed or higher accuracy.

The paper will introduce the NLM algorithm in Section 2.1 and illustrate
the proposed technique in Section 2.2. Successively, an experimental comparison
including a standard benchmark dataset is carried out in Section 3. Finally,
conclusions are drawn in Section 4.

2 Weighting by a Bounding Function

2.1 Original NLM

Like many denoising approaches, the NLM algorithm computes the noiseless
estimate Ĩ(i) of pixel I(i) as a weighted sum within a surrounding region centered
at position i:

Ĩ (i) =
∑

j∈s(i)

w (i, j) · I (j) (1)

Notably, the supporting pixel set s (i) in (1) may be in principle the whole
image, although a squared window of size rs is used in practice for the sake of
computational tractability.

The weighting advocated in [2] consists of a decreasing function of the dis-
similarity between the patch centered at position i and that centered at j, under
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the assumption that the noiseless estimate of I(i) should be obtained by aver-
aging the intensities of those locations featuring image patches similar to that
centered at i:

w (i, j) =
1

Z (i)
exp

(
−‖ I (N (i)) − I (N (j)) ‖22,a

h2

)
(2)

In (2), N (i) and N (j) are square image patches of size rp centered at i
and j, h is a parameter of the method, ‖ · ‖22,a is the L2 norm weighted by a
Gaussian function centered at the patch and with standard deviation a and Z
is a normalization factor:

Z (i) =
∑

j∈s(i)

exp

(
−‖ I (N (i)) − I (N (j)) ‖22,a

h2

)
(3)

Successively, the authors publicly released an implementation of NLM1 based
on a definition of the weighting function slightly different to that originally pro-
posed in [2]:

w′ (i, j) = exp

(
−max

(‖ I (N (i)) − I (N (j)) ‖22 −2σ2, 0
)

h2

)
(4)

with σ related to the estimated amount of noise affecting the image. The authors
recommend now to use this new formulation as it obtains improved results2.

2.2 Proposed Bounded NLM

The main idea underpinning our approach is that, while image positions exhibit-
ing highly similar patches represent a valuable subset to rely upon to estimate
a noiseless pixel, those yielding a low degree of similarity do not bring in any
useful contribution in the averaging process formulated in (1); indeed, they tend
to distort the final estimate and should thus better be discarded from the aver-
aging process to improve the quality of the final image. An inherent advantage of
such an approach deals with low-correlation patches being often high in number
within the search area surrounding a pixel, so that if we are able to devise a
method which is able to quickly detect mismatching patches, we would obtain
both improved accuracy as well as significant computational savings.

Purposely, we define a test to be evaluated at each pixel j ∈ s(i) before the
actual computation of the weight w′ (i, j):

e (i, j) > τ (5)

In (5), function e (i, j) is a lower bound of the L2 distance between the patch
centered at i and that centered at j, while τ is a parameter. Accordingly, we
1 www.ipol.im/pub/art/2011/bcm nlm
2 From personal communication with A. Buades.

www.ipol.im/pub/art/2011/bcm_nlm
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Algorithm 1. The Bounded-NLM denoising algorithm
I = image of n pixels
s = search area of radius rs
compute b, the box-filtered squared norms of rp-sized patches ∈ I
for i ∈ I do

Z(i) = 0
for j ∈ s(i) do

if (b(i) − b(j))2 > τ then
w′(i, j) = 0

else
compute w′(i, j) as in (4)
Z(i) = Z(i) + w′(i, j)

end if
w′(i, j) = w′(i, j)/Z(i)
compute Ĩ(i) as in (1)

end for
end for

define a new weighting function w
′
τ so that if test (5) holds at position j the

associated weight is set to 0:

w
′
τ (i, j) =

{
0, e (i, j) > τ
w′ (i, j) , otherwise

(6)

As e (i, j) is a lower bound of the L2 distance, all positions at which (5)
holds would have yielded a patch distance higher than τ . Hence parameter τ
represents the maximum dissimilarity above which a weight is set to zero and it
is guaranteed that no position j closer than τ to i is going to be discarded by
test (5). In particular, we choose:

e (i, j) =
(‖ I (N (i)) ‖22 − ‖ I (N (j)) ‖22

)2
(7)

which turns out to be a lower bound of the L2 distance

e (i, j) ≤‖ I (N (i)) − I (N (j)) ‖22,∀i, j (8)

due to the triangular inequality. Moreover, the chosen function e (i, j) is very
efficiently computable because the two norms appearing in (7) can be calculated
once and for all at initialization time and independently of the size of the patch
via fast incremental schemes such as Box Filtering [9] or Integral Images [3]. The
pseudo-code of the proposed algorithm is reported in Alg. 1.

Hence, the higher the number of positions satisfying test (5) the more sub-
stantial are the computational savings due to weights being immediately just
set to zero without calculating neither the dissimilarity function, i.e. the right
hand side in (8), nor (4). Remarkably, the proposed method guarantees that
all pixels showing a degree of dissimilarity to i smaller than τ will be included
in the averaging process required to compute its noiseless estimate. This com-
pares favorably with respect to other approaches in literature aimed at selecting
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Table 1. PSNR and efficiency comparison between NLM and bNLM on a standard
benchmark dataset at increasing noise levels (σ = 5, · · · , 40). At each noise level,
the same value of τ̃ is used in bNLM throughout the dataset (reported on the left).
Efficiency is compared in terms of measured execution times (reported in seconds in
the Table).

Barbara (512x512) Boat (512x512) Fingerprint (512x512)

NLM bNLM NLM bNLM NLM bNLM
σ rp rs τ̃ PSNR t PSNR t PSNR t PSNR t PSNR t PSNR t
5 1 10 4 37.04 4.69 37.07 1.79 36.58 4.82 36.61 1.99 35.14 4.19 35.08 0.68
10 1 10 6.6 33.17 5.08 33.24 2.29 32.92 5.16 33.04 2.46 31.03 4.49 31.09 1.03
15 1 10 10 30.81 5.16 30.87 2.76 30.73 5.25 30.90 2.90 28.74 4.78 28.85 1.41
20 2 10 10 30.25 9.91 30.32 5.25 29.76 10.80 29.93 5.56 27.30 9.43 27.33 2.67
25 2 10 10 29.09 9.86 29.18 5.03 28.62 9.86 28.88 5.31 26.25 9.68 26.33 2.70
30 2 10 13 28.08 9.93 28.24 5.67 27.69 9.88 28.00 5.94 25.36 9.84 25.56 3.31
35 3 17 8 27.45 45.90 27.82 16.81 26.81 45.84 27.35 19.21 24.80 46.07 25.01 12.39
40 3 17 8 26.50 46.38 27.03 16.58 26.03 45.83 26.69 18.67 24.03 46.37 24.39 12.50

House (256x256) Lena (512x512) Peppers (256x256)

NLM bNLM NLM bNLM NLM bNLM
σ rp rs τ̃ PSNR t PSNR t PSNR t PSNR t PSNR t PSNR t
5 1 10 4 38.59 1.23 38.63 0.72 37.90 5.00 37.96 2.23 37.30 1.17 37.34 0.39
10 1 10 6.6 34.98 1.25 34.98 0.77 34.30 5.20 34.44 2.68 33.52 1.22 33.68 0.50
15 1 10 10 32.82 1.25 32.83 0.83 32.07 5.30 32.24 3.09 31.21 1.25 31.42 0.60
20 2 10 10 32.48 2.36 32.56 1.58 31.55 9.83 31.75 5.83 30.32 2.34 30.51 1.08
25 2 10 10 31.33 2.36 31.40 1.46 30.46 9.86 30.71 5.56 29.15 2.37 29.40 1.05
30 2 10 13 30.28 2.37 30.48 1.57 29.54 9.85 29.85 6.16 28.16 2.38 28.47 1.19
35 3 17 8 29.75 10.79 30.23 5.20 28.89 45.87 29.46 19.36 27.22 10.83 27.73 3.30
40 3 17 8 28.80 10.78 29.44 4.98 28.09 45.83 28.78 18.82 26.30 10.85 26.99 3.26

a suitable subset of candidates to compute the noiseless estimate of a pixels
[8],[1],[13], as previous proposals may instead discard highly correlated candi-
dates and therefore potentially weaken the denoising process.

It is worth pointing out that more effective and complex schemes have been
proposed in literature to bound dissimilarity functions derived from the L2-
norm [10]. Yet, these approaches are conceived to deliver notable computational
benefits with patch sizes as large as required in typical template matching appli-
cations, whilst they can hardly provide similar advantages when applied to much
smaller patches (e.g. 7 × 7) as those usually deployed for the purpose of image
denoising in algorithms like NLM. In particular, we verified experimentally that
a more advanced incremental scheme such as IDA [12]) does not provide addi-
tional advantages with respect to the simple bounding function defined in (7).
Moreover, many of such methods constrain the patch size, e.g. to be even, while
this is not the case of original NLM formulation.

3 Experimental Results

In this Section we compare the proposed approach, which will be referred to
in these experiments as bNLM (bounded -NLM), to the NLM algorithm, so as
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Table 2. Comparing bNLM to [8],[1],[13] according to the results reported in [1] (Table
3) and in [13] (Table 4). Results related to method [1] in Table 3 concern increasing
block overlaps (a,b,c), as described in [1].

PSNR S.U.

NLM (2) 30.31 //
NLM (4) 30.70 //
bNLM 30.72 2.17

[8] 29.80 2.38
[1],a 30.26 1.34
[1],b 30.08 2.14
[1],c 29.83 2.9

Table 3. Barbara, σ = 20, rp = 4, rs = 10

PSNR S.U.

NLM (2) 27.83 //
NLM (4) 30.47 //
bNLM 30.63 2.91

[8] 27.78 2.13
[1] 27.51 2.68
[13] 27.60 4.35

Table 4. Peppers, σ = 20, rp = 3, rs = 11

to assess quantitatively its effectiveness in both speeding up and improving the
original technique. We have chosen to use the NLM version based on the weight-
ing function defined in (4) for two reasons. First, the chosen one is the most
recent NLM formulation proposed by the authors. Second, the publicly available
authors’ code and suggested parameter values concern this more recent version
only: using their code and parameter settings allow the comparison to be carried
out with the best possible fairness. Indeed, to actually implement and evaluate
our own method we have modified the authors’ code only in those parts strictly
related to our proposal and then run the program with exactly the same param-
eters as suggested by them3, which concern specifically the patch size rp, the
search area size rs and parameter h.

As for the parameter introduced by our method, i.e. the maximum dissimi-
larity τ , the experiments have been conducted using the normalized value τ̃ :

τ = τ̃2 · (2rp + 1)2 (9)

Thus, τ̃ compares directly to the average pixelwise difference and ranges within
[0, 255], so it is an easier parameter to interpret and set with respect to τ .

Table 1 reports the results yielded by NLM and bNLM on standard bench-
mark datasets, where each image is corrupted by additive Gaussian noise with
standard deviation ranging from σ = 5 up to σ = 40. As for the choice of
parameter τ̃ for bNLM, we have set a fixed value for each noise level, chosen
so to privilege denoising accuracy. Yet, depending on the application settings,
other choices of this parameter may be preferred so to favor computational sav-
ings rather than denoising accuracy: this can be easily achieved by decreasing
the value of τ so to increase the number of candidates being discarded by (5).
The Table reports, for each image, noise level and evaluated method, the PSNR
(Peak Signal-to-Noise Ratio) and the measured execution time (in seconds).
To measure execution times, the same platform has been used to run both the
NLM and the bNLM code, i.e. an Intel Core i7 with 64 GB RAM. As vouched by
the Table, bNLM consistently outperform NLM in terms of both computational
3 www.ipol.im/pub/art/2011/bcm nlm

www.ipol.im/pub/art/2011/bcm_nlm
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Fig. 1. Quantitative comparison between bNLM and NLM on the Barbara test image.
Each chart is related to a different noise level and reports as a function of τ̃ both the
PSNR yielded by bNLM and NLM (range reported on the left vertical axis) as well as
the speed-up provided by bNLM over NLM (range on the right vertical axis).

savings as well as denoising accuracy, yielding higher PSNRs and higher effi-
ciency with all test images, the improvement in terms of PSNR ranging up to
0.91.

The experimental results provided in this Section indicate also that, when
using similar patch and search area sizes, the proposed method compares favor-
ably with respect to previous pre-selection algorithms aimed at speeding up
NLM, such as [8],[1],[13]. Indeed, the results reported in Table 1 in [1] show
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noiseless noisy,  = 45 

NLM bNLM,  =  

Fig. 2. Comparison between NLM and bNLM on Boat (top) and Peppers (bottom).
Both figures show, respectively, the noiseless image (top left), the noisy image with
σ = 45 (top right), the noiseless estimation by NLM (bottom left) and by bNLM with
the suggested τ̃ value as in Table 1 (reported in the bottom right part of each Figure)
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Fig. 3. Comparison on real noise. Upper row: qualitative comparison between bNLM
and NLM on an image affected by real noise. Lower row: comparison on a zoomed
detail of the original image (bottom right corner).

that on Barbara neither [1] nor [8] can improve the PSNR with respect to NLM.
Similarly, Tables I and II in [13], show that with Peppers and Lena and a search
windows of size 23x23, NLM yields always a higher PSNR with respect to [8], [1]
and [13]. A more detailed comparison between bNLM and [8],[1],[13] is reported
in Tables 3 and 4. To obtain this data, bNLM parameters have been set exactly
as in the considered experiments in [1] and [13]. Also, the Tables report the
PSNR yielded by both NLM algorithms, i.e. as based on either formula (2) or
formula (4). The two Tables highlight that bNLM provides always the high-
est PSNR with respect to previous fast NLM-based methods while turning out
either second-best (Table b) or third-best (Table a) in terms of speed-up.

To provide more insights on the behavior of our method, in Fig. 1 we consider
the Barbara image corrupted by Gaussian noise, with σ = 5 up to σ = 45, and
compare bNLM to NLM in terms of both PSNR (left vertical axis) as well as
speed-up (right vertical axis) while varying τ̃ values. As it can be observed from
the Figure, with small τ values bNLM can report remarkable speed-ups with
respect to NLM without introducing a significant deterioration of the PSNR.
By increasing τ̃ , bNLM starts discarding a smaller number of candidates, this
resulting in lower speed-ups but also higher PSNRs. It is worth highlighting
how, with proper choices for τ̃ , in each of the experiments depicted in Fig. 1
bNLM can yield higher PSNRs than NLM, in particular at the higher noise
levels, this validating the idea that discarding dissimilar patches is beneficial to
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improve not only efficiency but denoising accuracy as well. In the three most
challenging denoising experiments considered in Fig. 1, bNLM can be tuned to
deliver both a substantial speed-up (i.e. larger than 4) and a higher PSNR with
respect to NLM. When τ̃ → ∞, bNLM behaves exactly as NLM (no candidate is
discarded), so that, by moving rightward along the horizontal axis of the charts,
speed-ups get close to 1 and the PSNRs yielded by the two algorithms becomes
more and more similar.

In addition to quantitative comparisons, we propose qualitative experiments
aimed at assessing the perceived denoising accuracy. Accordingly, Fig. 2 com-
pares NLM and bNLM on the Boat and Peppers test images corrupted by Gaus-
sian noise (σ = 45). The Figure shows how the proposed algorithm can restore
a higher amount of details in the estimated noiseless image, while NLM tends
to introduce more over-smoothing. This is particularly evident in the ground
surface and in the recovered cloud patterns in the sky of the Boat image, as well
as on the surface of the foreground vegetables depicted in Peppers.

Finally, Fig. 3, addresses the case of images corrupted by real noise. In the
figure, the upper row shows the original test image acquired by the camera
of a Nexus 5 smartphone under indoor lighting conditions, together with the
output yielded by NLM and bNLM, the parameters of the two algorithms set as
in Table 1, σ = 10. The bottom row shows also a zoomed detail of the original
image (taken from the bottom right corner) and the corresponding output by the
two compared methods. As it can be observed, bNLM can effectively smooth out
noise while preserving edges, the perceived quality being substantially equivalent
for the two considered methods. bNLM, though, turns out the most efficient
algorithm in these settings, running in 0.91 seconds, i.e. remarkably faster than
NLM, which requires 2.11 seconds.

4 Concluding Remarks

A candidate selection scheme for the NLM image denoising algorithm has been
proposed. By deploying a lower bound of the dissimilarity function employed
to compute NLM weights, the proposed approach can safely discard dissimilar
patches, so as to peculiarly provide both higher efficiency as well as improved
denoising accuracy with respect to NLM. Experimental results show that our
proposal is more beneficial as the noise level corrupting the image gets higher.
Possible extensions to this approach would include exploiting more effective lower
bounding function in spite of (8), so to increase the computational savings asso-
ciated with the proposed algorithm, at the same time rejecting weakly correlated
patches with respect to that of the current position.
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