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Triangulation - the building block of 3D reprojections

We have the pose R,t’ between cameras and the projection locations x, x". What
now ?

Get X : triangulate the point in 3D
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Get X : triangulate the point in 3D

» Back to our stereo projection equations :

Ax =KX Nx =K/'(RX +t)
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» We have five scalar unknowns and six equations - a direct approach is possible
by solving an overdetermined linear system
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Triangulation - the building block of 3D reprojections

We have the pose R,t’ between cameras and the projection locations x, x". What
now ?
Get X : triangulate the point in 3D

» Back to our stereo projection equations :
Ax =KX XNx'=K/(RX+t)
» We have five scalar unknowns and six equations - a direct approach is possible

by solving an overdetermined linear system

> There are other algorithms which are more accurate, but costlier

Hartley, R. I., Sturm, P. (1997). Triangulation. Computer vision and image understanding,
68(2), 146-157

Lindstrom, Peter. " Triangulation made easy.” In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pp. 1554-1561
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Triangulation - the building block of 3D reprojections

We have the pose R,t’ between cameras and the projection locations x, x". What
now ?

Get X : triangulate the point in 3D

» Back to our stereo projection equations :
Ax =KX XNx'=K/(RX+t)

» We have five scalar unknowns and six equations - a direct approach is possible
by solving an overdetermined linear system
» There are other algorithms which are more accurate, but costlier

Hartley, R. I., Sturm, P. (1997). Triangulation. Computer vision and image understanding,
68(2), 146-157

Lindstrom, Peter. " Triangulation made easy.” In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pp. 1554-1561
» The linear approach is reasonably good, and it is effective especially if used as

an initialization for a nonlinear refinement (as we will see in the following
slides)
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Triangulation - how to use multiple views

If we have multiple views, the unknown X; may be constrained by multiple observations z; . from
cameras C; characterized by some pose parametrization s, . How to use them effectively

together ?
Nonlinear optimization

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap 1l : Multi-view Geometry (3/10)



Triangulation - how to use multiple views

If we have multiple views, the unknown X; may be constrained by multiple observations z; . from
cameras C; characterized by some pose parametrization s, . How to use them effectively

together ?
Nonlinear optimization

» Analytical solutions are not practical, in most cases we solve the optimization iteratively
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Triangulation - how to use multiple views

If we have multiple views, the unknown X; may be constrained by multiple observations z; . from
cameras C; characterized by some pose parametrization s, . How to use them effectively
together ?
Nonlinear optimization

» Analytical solutions are not practical, in most cases we solve the optimization iteratively

» We define an error related to each of the observation, i.e. the distance between the
observation and the projection of X; : e(s-, X}, z;) = z; — g(sr, X;), where g is the camera
projection function. Then, we have :

X; = argxmin Z e(sr, X, z) "e(sr, X}, 2})
J T

» Use Gauss-Newton or LM (usually the optimum is not far from a reasonable initialization)
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Triangulation - how to use multiple views

If we have multiple views, the unknown X; may be constrained by multiple observations z; . from
cameras C; characterized by some pose parametrization s, . How to use them effectively
together ?

Nonlinear optimization

» Analytical solutions are not practical, in most cases we solve the optimization iteratively

» We define an error related to each of the observation, i.e. the distance between the
observation and the projection of X; : e(s-, X}, z;) = z; — g(sr, X;), where g is the camera
projection function. Then, we have :

X; = argxmin Z e(sr, X, z) "e(sr, X}, 2})
" T

» Use Gauss-Newton or LM (usually the optimum is not far from a reasonable initialization)

» More than one 3D point may be refined, but in this way the optimizations are decoupled
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Pose estimation - how to use multiple views

Opposite problem : we have a set of 3D points X; (computed previously) which are visible from
camera C,. Based on current observations zj - from C; we would like to estimate its pose s .

Nonlinear optimization
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Pose estimation - how to use multiple views

Opposite problem : we have a set of 3D points X; (computed previously) which are visible from
camera C,. Based on current observations zj - from C; we would like to estimate its pose s .

Nonlinear optimization

» We define an error related to each of the observations, i.e. the distance between the
observation and the projection of X; : e(s-, X}, z; +) = zj - — g(sr, X;), where g is the
camera projection function. Then, we have :

§; = argmin E e(sT,Xj,zjy.,.)Te(sT,Xj,sz)
S, -
j
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» We define an error related to each of the observations, i.e. the distance between the
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» Use Gauss-Newton or LM, but the initialization is very important. Two strategies help :
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Pose estimation - how to use multiple views

Opposite problem : we have a set of 3D points X; (computed previously) which are visible from
camera C,. Based on current observations zj - from C; we would like to estimate its pose s .
Nonlinear optimization

» We define an error related to each of the observations, i.e. the distance between the
observation and the projection of X; : e(s-, X}, z; +) = zj - — g(sr, X;), where g is the
camera projection function. Then, we have :

a . T
§; = argmin Z e(sr,Xj,zj,7) e(sr, Xj,zj,7)
S ;
» Use Gauss-Newton or LM, but the initialization is very important. Two strategies help :

> if the camera is moving, predict the current location based on its previous
trajectory

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap Il : Multi-view Geometry

(4/10)



Pose estimation - how to use multiple views

Opposite problem : we have a set of 3D points X; (computed previously) which are visible from
camera C,. Based on current observations zj - from C; we would like to estimate its pose s .
Nonlinear optimization

» We define an error related to each of the observations, i.e. the distance between the
observation and the projection of X; : e(s-, X}, z; +) = zj - — g(sr, X;), where g is the
camera projection function. Then, we have :

§; = argmin E e(sT,Xj,zj’.,.)Te(sT,Xj,sz)
S, -
j

» Use Gauss-Newton or LM, but the initialization is very important. Two strategies help :
> if the camera is moving, predict the current location based on its previous

trajectory
» from the projection of three 3D points in space and their projections, one may
compute the camera pose in a closed form (the P3P problem)
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Limitations of previous approaches

Assumptions :
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» for triangulation : we assume that the pose is correctly estimated
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Assumptions :

» for triangulation : we assume that the pose is correctly estimated

> for pose estimation : we assume that the 3D locations are accurate
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Limitations of previous approaches

Assumptions :

» for triangulation : we assume that the pose is correctly estimated
> for pose estimation : we assume that the 3D locations are accurate

> in reality all estimations we perform are noisy
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Limitations of previous approaches

Assumptions :

» for triangulation : we assume that the pose is correctly estimated

> for pose estimation : we assume that the 3D locations are accurate
> in reality all estimations we perform are noisy
>

if we also apply the process iteratively (triangulation, pose estimation and
repeat) the errors will be amplified (drift)
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Global optimization - initial step

Since computational power is widely available for autonomous systems, we favour
a solution which minimizes jointly with respect to the point locations and to the
poses.

Initial step :
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Global optimization - initial step

Since computational power is widely available for autonomous systems, we favour
a solution which minimizes jointly with respect to the point locations and to the
poses.

Initial step :

» we will just add a new unknown pose to the previous set of variables and
refine it :

§, = argmin E e(sﬂ va zjﬂ') (S‘H X ZJ',T)
S- -
J
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Global optimization - initial step
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Initial step :

» we will just add a new unknown pose to the previous set of variables and
refine it :

§, = argmin E e(sﬂ va zjﬂ') (S‘H X ZJ',T)
S- -
J

> observation : this step does not modify X
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Global optimization - initial step

Since computational power is widely available for autonomous systems, we favour
a solution which minimizes jointly with respect to the point locations and to the
poses.
Initial step :
» we will just add a new unknown pose to the previous set of variables and
refine it :
S :argminze(sﬂxjvzjﬂ') (S.,-,X ZJ',T)
S, "
J

> observation : this step does not modify X

> the interest of the initial step is just to provide a quality initialization for s as
St
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Global optimization - final step

We compute the MAP (Maximum A Posteriori) for the maximum amount of
preliminary estimations and observations that we have at that moment (brutal,
massive optimization). The solution we search this time is provided by :

T M
-~ ~ ) T
sO:ta X = arg min E E e(ST7 Xj,T: Zj,T) e(ST7 Xjﬂ'? Zjﬂ')
So:t,X =0 j=1

The complexity of this algorithm, once we exploit the sparseness of its Jacobian :
O(T3 + MT?), which is very interesting since M > T.
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Towards real time reconstruction

Pw PZ P3 P0 X1 Xz XJ XO

XX, XX,

VVH‘ l :

p

RN

> Point

An example of configuration : 5207 3D points, 54 poses, 24609 projections, 15945
variables, 21 it., 7.99 sec.
Not fast enough !

> Selection of key-frames

> Parallel execution of tracking et BA (initial and final steps)
> Limit the number of iterations (when needed)

> Local Bundle Adjustment
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Typical architecture for RT optimization
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Appendix - nonlinear optimization
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