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Triangulation - the building block of 3D reprojections

We have the pose R, t′ between cameras and the projection locations x, x′. What
now ?

Get X : triangulate the point in 3D
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◮ Back to our stereo projection equations :

λx = KX λ′x′ = K′(RX+ t)
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Triangulation - the building block of 3D reprojections

We have the pose R, t′ between cameras and the projection locations x, x′. What
now ?

Get X : triangulate the point in 3D

◮ Back to our stereo projection equations :

λx = KX λ′x′ = K′(RX+ t)

◮ We have five scalar unknowns and six equations - a direct approach is possible
by solving an overdetermined linear system

◮ There are other algorithms which are more accurate, but costlier
Hartley, R. I., Sturm, P. (1997). Triangulation. Computer vision and image understanding,
68(2), 146-157

Lindstrom, Peter. ”Triangulation made easy.” In Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, pp. 1554-1561
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◮ The linear approach is reasonably good, and it is effective especially if used as
an initialization for a nonlinear refinement (as we will see in the following
slides)
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Triangulation - how to use multiple views

If we have multiple views, the unknown Xj may be constrained by multiple observations zj,τ from
cameras Cτ characterized by some pose parametrization sτ . How to use them effectively
together ?

Nonlinear optimization
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If we have multiple views, the unknown Xj may be constrained by multiple observations zj,τ from
cameras Cτ characterized by some pose parametrization sτ . How to use them effectively
together ?

Nonlinear optimization
◮ Analytical solutions are not practical, in most cases we solve the optimization iteratively

◮ We define an error related to each of the observation, i.e. the distance between the
observation and the projection of Xj : e(sτ ,Xj , zj ) = zj − g(sτ ,Xj ), where g is the camera
projection function. Then, we have :

X̂j = argmin
Xj

∑

τ

e(sτ ,Xj , zj )
T e(sτ ,Xj , zj )

◮ Use Gauss-Newton or LM (usually the optimum is not far from a reasonable initialization)
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◮ Analytical solutions are not practical, in most cases we solve the optimization iteratively

◮ We define an error related to each of the observation, i.e. the distance between the
observation and the projection of Xj : e(sτ ,Xj , zj ) = zj − g(sτ ,Xj ), where g is the camera
projection function. Then, we have :

X̂j = argmin
Xj

∑

τ

e(sτ ,Xj , zj )
T e(sτ ,Xj , zj )

◮ Use Gauss-Newton or LM (usually the optimum is not far from a reasonable initialization)

◮ More than one 3D point may be refined, but in this way the optimizations are decoupled
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Pose estimation - how to use multiple views

Opposite problem : we have a set of 3D points Xj (computed previously) which are visible from
camera Cτ . Based on current observations zj,τ from Cτ we would like to estimate its pose sτ .

Nonlinear optimization
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◮ Use Gauss-Newton or LM, but the initialization is very important. Two strategies help :

◮ if the camera is moving, predict the current location based on its previous
trajectory
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Pose estimation - how to use multiple views

Opposite problem : we have a set of 3D points Xj (computed previously) which are visible from
camera Cτ . Based on current observations zj,τ from Cτ we would like to estimate its pose sτ .

Nonlinear optimization
◮ We define an error related to each of the observations, i.e. the distance between the

observation and the projection of Xj : e(sτ ,Xj , zj,τ ) = zj,τ − g(sτ ,Xj ), where g is the
camera projection function. Then, we have :

ŝτ = argmin
sτ

∑

j

e(sτ ,Xj , zj,τ )
T e(sτ ,Xj , zj,τ )

◮ Use Gauss-Newton or LM, but the initialization is very important. Two strategies help :

◮ if the camera is moving, predict the current location based on its previous
trajectory

◮ from the projection of three 3D points in space and their projections, one may
compute the camera pose in a closed form (the P3P problem)
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Limitations of previous approaches

Assumptions :
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Limitations of previous approaches

Assumptions :

◮ for triangulation : we assume that the pose is correctly estimated

◮ for pose estimation : we assume that the 3D locations are accurate

◮ in reality all estimations we perform are noisy

◮ if we also apply the process iteratively (triangulation, pose estimation and
repeat) the errors will be amplified (drift)

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap III : Multi-view Geometry (5/10)



Global optimization - initial step

Since computational power is widely available for autonomous systems, we favour
a solution which minimizes jointly with respect to the point locations and to the
poses.

Initial step :
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Global optimization - initial step

Since computational power is widely available for autonomous systems, we favour
a solution which minimizes jointly with respect to the point locations and to the
poses.

Initial step :

◮ we will just add a new unknown pose to the previous set of variables and
refine it :

ŝτ = argmin
sτ

∑

j

e(sτ ,Xj , zj,τ )
T
e(sτ ,Xj , zj,τ )
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a solution which minimizes jointly with respect to the point locations and to the
poses.

Initial step :

◮ we will just add a new unknown pose to the previous set of variables and
refine it :

ŝτ = argmin
sτ

∑

j

e(sτ ,Xj , zj,τ )
T
e(sτ ,Xj , zj,τ )

◮ observation : this step does not modify X

◮ the interest of the initial step is just to provide a quality initialization for sτ as
ŝt
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Global optimization - final step

We compute the MAP (Maximum A Posteriori) for the maximum amount of
preliminary estimations and observations that we have at that moment (brutal,
massive optimization). The solution we search this time is provided by :

S̃0:t , X̃ = argmin
S0:t ,X

T∑

τ=0

M∑

j=1

e(sτ ,Xj ,τ , zj ,τ )
T
e(sτ ,Xj ,τ , zj ,τ )

The complexity of this algorithm, once we exploit the sparseness of its Jacobian :
O(T 3 +MT 2), which is very interesting since M ≫ T .
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Towards real time reconstruction

An example of configuration : 5207 3D points, 54 poses, 24609 projections, 15945
variables, 21 it., 7.99 sec.
Not fast enough !

◮ Selection of key-frames

◮ Parallel execution of tracking et BA (initial and final steps)

◮ Limit the number of iterations (when needed)

◮ Local Bundle Adjustment
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Typical architecture for RT optimization

Map Module

Cartography initialization

Pairing Choice

Point Inclusion

Bundle Adjust

Signaling
Logic

Relocaliser
Module

Tracker Module

œ

Preprocessing

Pose Estimation

Keyframe Choice

Queue

Data
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Appendix - nonlinear optimization
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