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The 3D representation of points

In the 3D space :
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T / / ! NT /
p=(X.Y.2)T=| Y| p=(XV.Z)=]|Y
V4 z'

initial point same point in different coordinate system

Euclidean transform p’ = Rp + t becomes in homogeneous coordinates :

X' rni n2 n3 t X
Y| | m m m3 b Y
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or ; }f), avec RTR = I, detR = 1

or otherwise p’ = [

> the transform has six degrees of freedom (three elementary rotations, three

elementary translations)

» we discard the~for the sake of simplicity, but when it makes sense the

variables are homogeneous
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@ The pinhole camera model
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The pinhole camera model
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3D = 2D projection
» In the 3D focal plance : (X, Y,Z)T = (X/Z,fY/Z,f)T
» In the image 2D plane : (X,Y,2)T = (X/Z,fY/Z) = (x,y)

The pinhole camera model

The image plane projection (fX/Z,fY /Z) gives in homogeneous coordinates :

X f 1 0 v
fvo| = f : 1 0 5 | =disg(f,£,1)[N0]X
Z 1 10

Problem : usually, the chosen reference in the image plare is not the projection of
the optical axis :

image plane~. .

principal point

(perpendicular intersection point of
principal axis and image plane)

This gives in the reference system we use commonly :

X f Px 1 0 )\i
Y | = f p |- 1 0 = diag(f, f,1)[1|0]X
Z
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@ Applying a coordinate transformation
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Transformation to an inertial (fixed) frame

Final step of the modelling : we express the 3D variables in a frame which is not
attached to the camera and which is fixed (typical setting for mobile robotics) :

By denoting as C the center of the camera in “world” coordinates, the transform
world to camera is expressed as

KR S0 ,\RT —|3C -| X (8/25)
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@ Homogeneous representations and algebraic operations
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Homogeneous representation of 2D lines and points

> A 2D line is defined by ax + by + ¢ = 0 i.e. a parametrization | = (a, b, ¢).
» However, kax + kby + kc = 0 corresponds to the same line, thus

| = (ka, kb, kc),Vk € R\ {0}

A 2D point (x, y) lies on a line (a, b, ¢) if ax + by + ¢ = 0.

This may be expressed as (x,y,1)7 - (a,b,¢) = (x,y,1)T -1=0.

Vk € R\ {0}, (kx, ky, k)T -1 =0 if and only if (x,y,1)7 - 1= 0.

Vk € R\ {0}, we denote thus (kx, ky, k) as the homogeneous representation
of the 2D point (x, y).

An arbitrary homogeneous x = (x1, x2, X3) corresponds to the 2D point
(x1/x3, x2/x3).

» Result : the point x lies on the line I if and only if x"1 = 0.

v vvyyy

v

Result : the intersection of two lines | and I’ is the point x =1 x I'.

» Result : the line through two points x and x" is | = x x x'.

E. Aldea (CS&MM- U Pavia) COMPUTER VISION (10/25)

Some quick vector operations

i J k X3 — X3¥2
XXYy=Xx'Yy=|X1 X2 X3 |= | X3y1—X1)3
yi Y2 y3 X1Y2 — y1Xx2
0 —X3 X2
Xy = X3 0 —X1
—X2 X1 0

Mixed product : x” (y x z) = |x y z| (the volume of the parallelepiped defined by
the three vectors)

COMPUTER VISION

E. Aldea (CS&MM:- U Pavia) (11/25)

Singular value decomposition

Theorem (SVD) :

Let A be an m X n matrix. A may be expressed as :

min(m,n)
A=UIV' = Y UV
i=1

where X is a m x n diagonal matrix with o; = X; > 0, and U (m x m) and V
(n x n) are composed of orthornormal columns

» The rank of A is the number of o; > 0

» An orthonormal basis for the null space of A is composed of V; for indices i

such that o; =0

> By convention, the o; are aligned in descending order by the decomposition
algorithms.
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@ The fundamental matrix
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Why is this part “fundamental” ? (cheap joke)

What we can get from two views :
» Sparse 3D reconstruction

Relative camera pose estimation

| 2

» Parametric surface fitting

» Dense 3D reconstruction (more complex work required for this)
>

... but also many multi-view algorithms extend nicely from two-view analysis

Original Images
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The anatomy of two views

Some important observations :

» the pixel projection is along the ray defined by the 3D point and the camera
center (i.e. as for x, X and C)

» conversely, if x and x’ do correspond to the same 3D point, the two rays
intersect

> the two rays define a plane 7 denoted as epipolar plane
» the epipolar plane also contains the ray defined by the camera centers

5 4
.

polrpime T

AL
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The anatomy of two views

From the projection in the two views we have :
Ax =KX Mx' =K'(RX+t)

By eliminating X we get :
X=XK"1x XNx =K/'(ARK 'x+t)
NK' 7' = ARK Ix + t
We eliminate the sum by applying a cross product with t :
NixK 7 = At RK~1x
We multiply by K’~!x’ in order to get a null mixed product :
0= AKXty RK1x

Finally, by transposing K’~x’ and ignoring the scalar A we get :
XTK " TtyRK 1x=0
N————

F
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The fundamental matrix F

v
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applying the F constraint does not require information about the scene 3D
structure

F is valid for the whole image
we may apply the constraint without performing/knowing the camera
calibration
For a given point x’,we denote by I’ its corresponding epipolar line. It follows
T
from x’ " Fx = 0 that
I' = Fx
Similarly, I = F"x/
The fundamental matrix constraint translates to a search along the epipolar
line ...

... but also F = K’thXRK’1 encodes, along with the calibration matrices,
the rotation and translation between views
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The fundamental matrix F

Theorem

The condition which is necessary and sufficient for a matrix F to be a fundamental

matrix is that
det(F) =0

Multiple ways to notice that F is rank deficient :
> it follows from the fact that det(tyx) =0
> it follows from the fact that Fe =0
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Computing F - the 8 point algorithm

Straightforward approach :

>
>

| 2
>

E. Aldea

each observation (match) provides a constraint on F as xi’TFx; =0

if we group the unknowns as the column vector f = [f11 fi2... f33], the
constraint may be expressed as ajf = 0, with a; a row vector

only 8 parameters are independent, since the scale is not determined

the search for f may be expressed as :

mfin ||Af]| , subject to ||f|| =1

where A = [a; a3 .. . ag]

Solution : f is the last column of V, where A = UDVT is the SVD of A
Proof :

HUDVTfH = ||DVTf||, and ||f|| = ||VTfH. We have to minimize ||DVTf|| subject to
HVTfH = 1. If y = VTF, then we minimize ||Dy|| subject to ||y|| = 1. Since D is diagonal
with values in descending order, it means that y = (0,0...,1), and f = Vy is the last
column of V. (A5.3, Hartley and Zisserman)
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Considerations - the 8 point algorithm

Straightforward approach :
» major issue : the solution F may violate the rank constraint !
» Hack : decompose F using SVD, set 03 = 0 and recompose.

» What about searching directly for a rank 2 solution for F 7

The 7 point algorithm :
» Use 7 constraints for Af =0

» Use SVD on A in order to find the vectors f; and f, that span the null space

(the kernel) of A

» Find an element in the kernel expressed by the linear combination f = f; + af;

which also satisfies det(F) =0

» det(F; + aF3) is a third degree polynomial, so up to three potential solutions

may be recovered

» This algorithm is also preferred as fewer observations are needed
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@ The essential matrix
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Using the camera calibration and the essential matrix

If the calibration matrices K and K’ are known :
> we may recover the pose information from F = K’_TtXRK_1 :

E=t,R=KFK

> E has five degrees of freedom (and not six) because the relative translation t
has a scale ambiguity (just as F).

> Beside det(E) = 0, there is an additional constraint with respect to F, which
results from the structure of E :
Theorem : The condition which is necessary and sufficient for a matrix E to be an essential

matrix is that two of its singular values be equal, and the third one be 0.

» There are thus at least five points needed for recovering directly E from an
image pair, assuming that the calibration matrices are known, and there is an
algorithm which solves this minimal problem( Nistér, David. " An efficient solution
to the five-point relative pose problem.” IEEE Transactions on Pattern Analysis and

Machine Intelligence (2004). )
» Knowing E : interesting for relative pose estimation
» Main disadvantage : K and K’ are required to get to E
E. Aldea (CS&MM- U Pavia)
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Recovering R and t from E

It has been shown that the decomposition of E is possible and there are actually
four valid solutions (9.6.2, Hartley and Zisserman) :

L K

@) (b)

_]7/_

A B’ B A

[C] @

Fig. 9.12. The four possible solutions for calibrated reconstruction from E. Between the lefi and
right sides there is a baseline reversal. Between the top and bottom rows camera B rotates 180° about
the baseline. Note, only in (a) is the reconstrucied point in front of both cameras.

> |dentify the correct solution : cheirality check (the 3D points have to be in
front of the camera) with an additional match from the two views
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@ Rectification
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Rectification

Using F, we restrict the search for the corresponding projection x’ of a point x to a line (the
epipolar line I’ = Fx).

Stereo rectification

>
>
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Apply an adjustment to the images in order to get horizontal epipolar lines in both views

The search for x’ takes place simply along the same corresponding row in the second
image : interesting for dense correspondence

This implies that epipoles are at horizontal infinity : e = e’ = [1 0 O]T

Apply a virtual rotation of cameras ( Fusiello, A.; Trucco, E.; Verri, A. A compact
algorithm for rectification of stereo pairs. Mach. Vision Appl 2000 )

An interpolation is required for creating the new images, but high computation gain overall

A




