COMPUTER VISION
 Two-view Geometry

Emanuel Aldea emanuel.aldea@u-psud.fr http://hebergement.u-psud.fr/emi/

Computer Science and Multimedia Master - University of Pavia

Outline

- The 3D representation of points
- The pinhole camera model
- Applying a coordinate transformation
- Homogeneous representations and algebraic operations
- The fundamental matrix
- The essential matrix
- Rectification

Outline

- The 3D representation of points
- The pinhole camera model
- Applying a coordinate transformation
- Homogeneous representations and algebraic operations
- The fundamental matrix
- The essential matrix
- Rectification
- the transform has six degrees of freedom (three elementary rotations, three elementary translations)
- we discard the ${ }^{\sim}$ for the sake of simplicity, but when it makes sense the variables are homogeneous

The pinhole camera model

$3 \mathrm{D} \Rightarrow 2 \mathrm{D}$ projection

- In the 3D focal plance : $(X, Y, Z)^{T} \Rightarrow(f X / Z, f Y / Z, f)^{T}$
- In the image 2D plane : $(X, Y, Z)^{T} \Rightarrow(f X / Z, f Y / Z)=(x, y)$
E. Aldea (CS\&MM- U Pavia)

COMPUTER VISION

Outline

- The 3D representation of points
- The pinhole camera model
- Applying a coordinate transformation
- Homogeneous representations and algebraic operations
- The fundamental matrix
- The essential matrix
- Rectification

The pinhole camera model

The image plane projection $(f X / Z, f Y / Z)$ gives in homogeneous coordinates :

$$
\left[\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right]=\left[\begin{array}{lll}
f & & \\
& f & \\
& & 1
\end{array}\right] \cdot\left[\begin{array}{llll}
1 & & & 0 \\
& 1 & & 0 \\
& & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\operatorname{diag}(f, f, 1)[\mathbf{I} \mathbf{0}] \mathbf{X}
$$

Problem : usually, the chosen reference in the image plane is not the projection of the optical axis:

This gives in the reference system we use commonly :

$$
(X, Y, Z) \Rightarrow\left(f X / Z+p_{x}, f Y / Z+p_{y}\right)
$$

Transformation to an inertial (fixed) frame

Final step of the modelling : we express the 3D variables in a frame which is not attached to the camera and which is fixed (typical setting for mobile robotics) :

By denoting as \mathbf{C} the center of the camera in "world" coordinates, the transform world to camera is expressed as

Outline

- The 3D representation of points
- The pinhole camera model
- Applying a coordinate transformation
- Homogeneous representations and algebraic operations
- The fundamental matrix
- The essential matrix
- Rectification

Homogeneous representation of 2D lines and points

- A 2D line is defined by $a x+b y+c=0$ i.e. a parametrization $\mathbf{I}=(a, b, c)$.
- However, $k a x+k b y+k c=0$ corresponds to the same line, thus $\mathbf{I}=(k a, k b, k c), \forall k \in \mathbb{R} \backslash\{0\}$
- A 2D point (x, y) lies on a line (a, b, c) if $a x+b y+c=0$.
- This may be expressed as $(x, y, 1)^{T} \cdot(a, b, c)=(x, y, 1)^{T} \cdot \mathbf{I}=0$.
- $\forall k \in \mathbb{R} \backslash\{0\},(k x, k y, k)^{T} \cdot \mathbf{I}=0$ if and only if $(x, y, 1)^{T} \cdot \mathbf{I}=0$.
- $\forall k \in \mathbb{R} \backslash\{0\}$, we denote thus $(k x, k y, k)$ as the homogeneous representation of the 2D point (x, y).
- An arbitrary homogeneous $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ corresponds to the 2D point $\left(x_{1} / x_{3}, x_{2} / x_{3}\right)$.
- Result : the point \mathbf{x} lies on the line \mathbf{I} if and only if $\mathbf{x}^{\top} \mathbf{I}=0$.
- Result : the intersection of two lines \mathbf{I} and \mathbf{I}^{\prime} is the point $\mathbf{x}=\mathbf{I} \times \mathbf{I}^{\prime}$.
- Result : the line through two points \mathbf{x} and \mathbf{x}^{\prime} is $\mathbf{I}=\mathbf{x} \times \mathbf{x}^{\prime}$.
E. Aldea (CS\&MM- U Pavia)

COMPUTER VISION

Singular value decomposition

Theorem (SVD) :
Let \mathbf{A} be an $m \times n$ matrix. A may be expressed as :

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\sum_{i=1}^{\min (m, n)} \sigma_{i} U_{i} V_{i}^{T}
$$

where $\boldsymbol{\Sigma}$ is a $m \times n$ diagonal matrix with $\sigma_{i}=\boldsymbol{\Sigma}_{i i} \geq 0$, and $\mathbf{U}(m \times m)$ and \mathbf{V} ($n \times n$) are composed of orthornormal columns

- The rank of \mathbf{A} is the number of $\sigma_{i}>0$
- An orthonormal basis for the null space of \mathbf{A} is composed of V_{i} for indices i such that $\sigma_{i}=0$
- By convention, the σ_{i} are aligned in descending order by the decomposition algorithms.

Outline

- The 3D representation of points
- The pinhole camera model
- Applying a coordinate transformation
- Homogeneous representations and algebraic operations
- The fundamental matrix
- The essential matrix
- Rectification

The anatomy of two views

Some important observations:

- the pixel projection is along the ray defined by the 3D point and the camera center (i.e. as for \mathbf{x}, \mathbf{X} and \mathbf{C})
- conversely, if \mathbf{x} and \mathbf{x}^{\prime} do correspond to the same 3D point, the two rays intersect
- the two rays define a plane π denoted as epipolar plane
- the epipolar plane also contains the ray defined by the camera centers

Why is this part "fundamental" ? (cheap joke)

What we can get from two views:

- Sparse 3D reconstruction
- Relative camera pose estimation
- Parametric surface fitting
- Dense 3D reconstruction (more complex work required for this)
- ... but also many multi-view algorithms extend nicely from two-view analysis

E. Aldea (CS\&MM- U Pavia)

> COMPUTER VISION

The anatomy of two views

From the projection in the two views we have:

$$
\lambda \mathbf{x}=\mathbf{K} \mathbf{X} \quad \lambda^{\prime} \mathbf{x}^{\prime}=\mathbf{K}^{\prime}(\mathbf{R X}+\mathbf{t})
$$

By eliminating \mathbf{X} we get :

$$
\begin{gathered}
\mathbf{X}=\lambda \mathbf{K}^{-1} \mathbf{x} \quad \lambda^{\prime} \mathbf{x}^{\prime}=\mathbf{K}^{\prime}\left(\lambda \mathbf{R} \mathbf{K}^{-1} \mathbf{x}+\mathbf{t}\right) \\
\lambda^{\prime} \mathbf{K}^{\prime-1} \mathbf{x}^{\prime}=\lambda \mathbf{R} \mathbf{K}^{-1} \mathbf{x}+\mathbf{t}
\end{gathered}
$$

We eliminate the sum by applying a cross product with \mathbf{t} :

$$
\lambda^{\prime} \mathbf{t} \times \mathbf{K}^{\prime-1} \mathbf{x}^{\prime}=\lambda \mathbf{t} \times \mathbf{R K}^{-1} \mathbf{x}
$$

We multiply by $\mathbf{K}^{\prime-1} \mathbf{x}^{\prime}$ in order to get a null mixed product

$$
0=\lambda \mathbf{K}^{\prime-1} \mathbf{x}^{\prime} \mathbf{t}_{\times} \mathbf{R K}^{-1} \mathbf{x}
$$

Finally, by transposing $\mathbf{K}^{\prime-1} \mathbf{x}^{\prime}$ and ignoring the scalar λ we get:

$$
\mathbf{x}^{\prime T} \underbrace{\mathbf{K}^{\prime-T} \mathbf{t}_{\times} \mathbf{R K}^{-1}}_{-} \mathbf{x}=0
$$

The fundamental matrix F

$$
\mathbf{x}^{\prime T} \mathbf{F} \mathbf{x}=0
$$

- applying the \mathbf{F} constraint does not require information about the scene 3D structure
- \mathbf{F} is valid for the whole image
- we may apply the constraint without performing/knowing the camera calibration
- For a given point \mathbf{x}^{\prime}, we denote by \mathbf{I}^{\prime} its corresponding epipolar line. It follows from $\mathbf{x}^{\prime T} \mathbf{F} \mathbf{x}=0$ that

$$
\mathbf{I}^{\prime}=\mathbf{F x}
$$

- Similarly, $\mathbf{I}=\mathbf{F}^{\top} \mathbf{x}^{\prime}$
- The fundamental matrix constraint translates to a search along the epipolar line ...
$-\ldots$ but also $\mathbf{F}=\mathbf{K}^{\prime-T} \mathbf{t}_{\times} \mathbf{R K}^{-1}$ encodes, along with the calibration matrices, the rotation and translation between views

Computing F - the 8 point algorithm

Straightforward approach :

- each observation (match) provides a constraint on F as $\mathbf{x}_{\mathbf{i}}{ }^{\top} \mathbf{F} \mathbf{x}_{\mathbf{i}}=0$
- if we group the unknowns as the column vector $\mathbf{f}=\left[f_{11} f_{12} \ldots f_{33}\right]$, the constraint may be expressed as $\mathbf{a}_{\mathbf{i}} \mathbf{f}=0$, with $\mathbf{a}_{\mathbf{i}}$ a row vector
- only 8 parameters are independent, since the scale is not determined
- the search for \mathbf{f} may be expressed as :

$$
\min _{\mathbf{f}}\|\mathbf{A f}\|, \text { subject to }\|\mathbf{f}\|=1
$$

where $\mathbf{A}=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{\mathbf{8}}\end{array}\right]$
Solution : \mathbf{f} is the last column of \mathbf{V}, where $\mathbf{A}=\operatorname{UDV}^{T}$ is the SVD of \mathbf{A}

- Proof:
$\left\|\mathbf{U D V}^{\top} \mathbf{f}\right\|=\left\|\mathbf{D V}{ }^{\top} \mathbf{f}\right\|$, and $\|\mathbf{f}\|=\left\|\mathbf{V}^{\top} \mathbf{f}\right\|$. We have to minimize $\left\|\mathbf{D V}^{\top} \mathbf{f}\right\|$ subject to $\left\|\mathbf{V}^{\top} \mathbf{f}\right\|=1$. If $\mathbf{y}=\mathbf{V}^{\top} \mathbf{f}$, then we minimize $\|\mathbf{D} \boldsymbol{y}\|$ subject to $\|\mathbf{y}\|=1$. Since \mathbf{D} is diagonal with values in descending order, it means that $\mathbf{y}=(0,0 \ldots, 1)$, and $\mathbf{f}=\mathbf{V} \mathbf{y}$ is the last column of V. (A5.3, Hartley and Zisserman)

The fundamental matrix F

Theorem
The condition which is necessary and sufficient for a matrix \mathbf{F} to be a fundamental matrix is that

$$
\operatorname{det}(\mathbf{F})=0
$$

Multiple ways to notice that \mathbf{F} is rank deficient:

- it follows from the fact that $\operatorname{det}\left(\mathbf{t}_{\times}\right)=0$
- it follows from the fact that $\mathbf{F e}=0$

Considerations - the 8 point algorithm

Straightforward approach :

- major issue : the solution \mathbf{F} may violate the rank constraint !
- Hack : decompose \mathbf{F} using SVD, set $\sigma_{3}=0$ and recompose.
- What about searching directly for a rank 2 solution for \mathbf{F} ?

The 7 point algorithm :

- Use 7 constraints for $\mathbf{A f}=\mathbf{0}$
- Use SVD on \mathbf{A} in order to find the vectors \mathbf{f}_{1} and \mathbf{f}_{2} that span the null space (the kernel) of A
- Find an element in the kernel expressed by the linear combination $\mathbf{f}=\mathbf{f}_{1}+\alpha \mathbf{f}_{2}$ which also satisfies $\operatorname{det}(\mathbf{F})=0$
$-\operatorname{det}\left(\mathbf{F}_{\mathbf{1}}+\alpha \mathbf{F}_{\mathbf{2}}\right)$ is a third degree polynomial, so up to three potential solutions may be recovered
- This algorithm is also preferred as fewer observations are needed

Outline

- The 3D representation of points
- The pinhole camera model
- Applying a coordinate transformation
- Homogeneous representations and algebraic operations
- The fundamental matrix
- The essential matrix
- Rectification

Using the camera calibration and the essential matrix

If the calibration matrices \mathbf{K} and \mathbf{K}^{\prime} are known :

- we may recover the pose information from $\mathbf{F}=\mathbf{K}^{\prime-T} \mathbf{t}_{\times} \mathbf{R K} \mathbf{K}^{-1}$:

$$
\mathbf{E}=\mathbf{t}_{\times} \mathbf{R}=\mathbf{K}^{\prime T} \mathbf{F K}
$$

- E has five degrees of freedom (and not six) because the relative translation \mathbf{t} has a scale ambiguity (just as \mathbf{F}).
- Beside $\operatorname{det}(\mathbf{E})=0$, there is an additional constraint with respect to \mathbf{F}, which results from the structure of \mathbf{E} :
Theorem : The condition which is necessary and sufficient for a matrix \mathbf{E} to be an essential matrix is that two of its singular values be equal, and the third one be 0 .
- There are thus at least five points needed for recovering directly \mathbf{E} from an image pair, assuming that the calibration matrices are known, and there is an algorithm which solves this minimal problem(Nistér, David. "An efficient solution to the five-point relative pose problem." IEEE Transactions on Pattern Analysis and Machine Intelligence (2004).)
- Knowing E: interesting for relative pose estimation
- Main disadvantage : \mathbf{K} and \mathbf{K}^{\prime} are required to get to \mathbf{E}

Outline

- The 3D representation of points
- The pinhole camera model
- Applying a coordinate transformation
- Homogeneous representations and algebraic operations
- The fundamental matrix
- The essential matrix
- Rectification
- Identify the correct solution : cheirality check (the 3D points have to be in front of the camera) with an additional match from the two views

Rectification

Using \mathbf{F}, we restrict the search for the corresponding projection \mathbf{x}^{\prime} of a point \mathbf{x} to a line (the epipolar line $\mathbf{I}^{\prime}=\mathbf{F x}$).

Stereo rectification

- Apply an adjustment to the images in order to get horizontal epipolar lines in both views
- The search for \mathbf{x}^{\prime} takes place simply along the same corresponding row in the second image : interesting for dense correspondence
- This implies that epipoles are at horizontal infinity : $\mathbf{e}=\mathbf{e}^{\prime}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}$
- Apply a virtual rotation of cameras (Fusiello, A. ; Trucco, E.; Verri, A. A compact algorithm for rectification of stereo pairs. Mach. Vision Appl 2000)
- An interpolation is required for creating the new images, but high computation gain overall

E. Aldea (CS\&MM-U Pavia)

COMPUTER VIIION

