# COMPUTER VISION Multi-view Geometry 

Emanuel Aldea [emanuel.aldea@u-psud.fr](mailto:emanuel.aldea@u-psud.fr) http://hebergement.u-psud.fr/emi/

Computer Science and Multimedia Master - University of Pavia

## Triangulation - the building block of 3D reprojections

We have the pose $\mathbf{R}, \mathbf{t}^{\prime}$ between cameras and the projection locations $\mathbf{x}, \mathbf{x}^{\prime}$. What now?


Get $\mathbf{X}$ : triangulate the point in 3D

## Triangulation - the building block of 3D reprojections

We have the pose $\mathbf{R}, \mathbf{t}^{\prime}$ between cameras and the projection locations $\mathbf{x}, \mathbf{x}^{\prime}$. What now?

Get $\mathbf{X}$ : triangulate the point in 3D

- Back to our stereo projection equations :

$$
\lambda \mathbf{x}=\mathbf{K X} \quad \lambda^{\prime} \mathbf{x}^{\prime}=\mathbf{K}^{\prime}(\mathbf{R X}+\mathbf{t})
$$

## Triangulation - the building block of 3D reprojections

We have the pose $\mathbf{R}, \mathbf{t}^{\prime}$ between cameras and the projection locations $\mathbf{x}, \mathbf{x}^{\prime}$. What now?

Get $\mathbf{X}$ : triangulate the point in 3D

- Back to our stereo projection equations :

$$
\lambda \mathbf{x}=\mathbf{K X} \quad \lambda^{\prime} \mathbf{x}^{\prime}=\mathbf{K}^{\prime}(\mathbf{R X}+\mathbf{t})
$$

- We have five scalar unknowns and six equations - a direct approach is possible by solving an overdetermined linear system


## Triangulation - the building block of 3D reprojections

We have the pose $\mathbf{R}, \mathbf{t}^{\prime}$ between cameras and the projection locations $\mathbf{x}, \mathbf{x}^{\prime}$. What now?

## Get $\mathbf{X}$ : triangulate the point in 3D

- Back to our stereo projection equations :

$$
\lambda \mathbf{x}=\mathbf{K X} \quad \lambda^{\prime} \mathbf{x}^{\prime}=\mathbf{K}^{\prime}(\mathbf{R X}+\mathbf{t})
$$

- We have five scalar unknowns and six equations - a direct approach is possible by solving an overdetermined linear system
- There are other algorithms which are more accurate, but costlier Hartley, R. I., Sturm, P. (1997). Triangulation. Computer vision and image understanding, 68(2), 146-157
Lindstrom, Peter. "Triangulation made easy." In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 1554-1561


## Triangulation - the building block of 3D reprojections

We have the pose $\mathbf{R}, \mathbf{t}^{\prime}$ between cameras and the projection locations $\mathbf{x}, \mathbf{x}^{\prime}$. What now?

## Get $\mathbf{X}$ : triangulate the point in 3D

- Back to our stereo projection equations :

$$
\lambda \mathbf{x}=\mathbf{K X} \quad \lambda^{\prime} \mathbf{x}^{\prime}=\mathbf{K}^{\prime}(\mathbf{R X}+\mathbf{t})
$$

- We have five scalar unknowns and six equations - a direct approach is possible by solving an overdetermined linear system
- There are other algorithms which are more accurate, but costlier Hartley, R. I., Sturm, P. (1997). Triangulation. Computer vision and image understanding, 68(2), 146-157
Lindstrom, Peter. "Triangulation made easy." In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 1554-1561
- The linear approach is reasonably good, and it is effective especially if used as an initialization for a nonlinear refinement (as we will see in the following slides)


## Triangulation - how to use multiple views

If we have multiple views, the unknown $\mathbf{X}_{j}$ may be constrained by multiple observations $\mathbf{z}_{j, \tau}$ from cameras $C_{\tau}$ characterized by some pose parametrization $\mathbf{s}_{\tau}$. How to use them effectively together?
Nonlinear optimization


## Triangulation - how to use multiple views

If we have multiple views, the unknown $\mathbf{X}_{j}$ may be constrained by multiple observations $\mathbf{z}_{j, \tau}$ from cameras $C_{\tau}$ characterized by some pose parametrization $\mathbf{s}_{\tau}$. How to use them effectively together?
Nonlinear optimization

- Analytical solutions are not practical, in most cases we solve the optimization iteratively



## Triangulation - how to use multiple views

If we have multiple views, the unknown $\mathbf{X}_{j}$ may be constrained by multiple observations $\mathbf{z}_{j, \tau}$ from cameras $C_{\tau}$ characterized by some pose parametrization $\mathbf{s}_{\tau}$. How to use them effectively together?

## Nonlinear optimization

- Analytical solutions are not practical, in most cases we solve the optimization iteratively
- We define an error related to each of the observation, i.e. the distance between the observation and the projection of $\mathbf{X}_{j}: e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j}\right)=\mathbf{z}_{j}-g\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}\right)$, where $g$ is the camera projection function. Then, we have :

$$
\hat{\mathbf{X}}_{j}=\underset{\mathbf{x}_{j}}{\arg \min } \sum_{\tau} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j}\right)^{T} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j}\right)
$$

- Use Gauss-Newton or LM (usually the optimum is not far from a reasonable initialization)



## Triangulation - how to use multiple views

If we have multiple views, the unknown $\mathbf{X}_{j}$ may be constrained by multiple observations $\mathbf{z}_{j, \tau}$ from cameras $C_{\tau}$ characterized by some pose parametrization $\mathbf{s}_{\tau}$. How to use them effectively together?

## Nonlinear optimization

- Analytical solutions are not practical, in most cases we solve the optimization iteratively
- We define an error related to each of the observation, i.e. the distance between the observation and the projection of $\mathbf{X}_{j}: e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j}\right)=\mathbf{z}_{j}-g\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}\right)$, where $g$ is the camera projection function. Then, we have :

$$
\hat{\mathbf{X}}_{j}=\underset{\mathbf{x}_{j}}{\arg \min } \sum_{\tau} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j}\right)^{T} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j}\right)
$$

- Use Gauss-Newton or LM (usually the optimum is not far from a reasonable initialization)
- More than one 3D point may be refined, but in this way the optimizations are decoupled



## Pose estimation - how to use multiple views

Opposite problem : we have a set of 3D points $\mathbf{X}_{\mathbf{j}}$ (computed previously)which are visible from camera $C_{\tau}$. Based on current observations $\mathbf{z}_{j, \tau}$ from $C_{\tau}$ we would like to estimate its pose $\mathbf{s}_{\tau}$. Nonlinear optimization

## Pose estimation - how to use multiple views

Opposite problem : we have a set of 3D points $\mathbf{X}_{\mathbf{j}}$ (computed previously)which are visible from camera $C_{\tau}$. Based on current observations $\mathbf{z}_{j, \tau}$ from $C_{\tau}$ we would like to estimate its pose $\mathbf{s}_{\tau}$. Nonlinear optimization

- We define an error related to each of the observation, i.e. the distance between the observation and the projection of $\mathbf{X}_{j}: e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)=\mathbf{z}_{j, \tau}-g\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}\right)$, where $g$ is the camera projection function. Then, we have :

$$
\hat{\mathbf{s}}_{\tau}=\underset{\mathbf{s}_{\tau}}{\arg \min } \sum_{j} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)^{T} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)
$$

## Pose estimation - how to use multiple views

Opposite problem : we have a set of 3D points $\mathbf{X}_{\mathbf{j}}$ (computed previously)which are visible from camera $C_{\tau}$. Based on current observations $\mathbf{z}_{j, \tau}$ from $C_{\tau}$ we would like to estimate its pose $\mathbf{s}_{\tau}$. Nonlinear optimization

- We define an error related to each of the observation, i.e. the distance between the observation and the projection of $\mathbf{X}_{j}: e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)=\mathbf{z}_{j, \tau}-g\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}\right)$, where $g$ is the camera projection function. Then, we have :

$$
\hat{\mathbf{s}}_{\tau}=\underset{\mathbf{s}_{\tau}}{\arg \min } \sum_{j} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)^{T} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)
$$

- Use Gauss-Newton or LM, but the initialization is very important. Two strategies help :


## Pose estimation - how to use multiple views

Opposite problem : we have a set of 3D points $\mathbf{X}_{\mathbf{j}}$ (computed previously)which are visible from camera $C_{\tau}$. Based on current observations $\mathbf{z}_{j, \tau}$ from $C_{\tau}$ we would like to estimate its pose $\mathbf{s}_{\tau}$. Nonlinear optimization

- We define an error related to each of the observation, i.e. the distance between the observation and the projection of $\mathbf{X}_{j}: e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)=\mathbf{z}_{j, \tau}-g\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}\right)$, where $g$ is the camera projection function. Then, we have :

$$
\hat{\mathbf{s}}_{\tau}=\underset{\mathbf{s}_{\tau}}{\arg \min } \sum_{j} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)^{T} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)
$$

- Use Gauss-Newton or LM, but the initialization is very important. Two strategies help :
- if the camera is moving, predict the current location based on its previous trajectory


## Pose estimation - how to use multiple views

Opposite problem : we have a set of 3D points $\mathbf{X}_{\mathbf{j}}$ (computed previously)which are visible from camera $C_{\tau}$. Based on current observations $\mathbf{z}_{j, \tau}$ from $C_{\tau}$ we would like to estimate its pose $\mathbf{s}_{\tau}$.

## Nonlinear optimization

- We define an error related to each of the observation, i.e. the distance between the observation and the projection of $\mathbf{X}_{j}: e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)=\mathbf{z}_{j, \tau}-g\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}\right)$, where $g$ is the camera projection function. Then, we have :

$$
\hat{\mathbf{s}}_{\tau}=\underset{\mathbf{s}_{\tau}}{\arg \min } \sum_{j} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)^{T} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)
$$

- Use Gauss-Newton or LM, but the initialization is very important. Two strategies help :
- if the camera is moving, predict the current location based on its previous trajectory
- from the projection of three 3D points in space and their projections, one may compute the camera pose in a closed form (the P3P problem)


## Limitations of previous approaches

Assumptions:

## Limitations of previous approaches

## Assumptions:

- for triangulation : we assume that the pose is correctly estimated


## Limitations of previous approaches

## Assumptions:

- for triangulation : we assume that the pose is correctly estimated
- for pose estimation : we assume that the 3D locations are accurate


## Limitations of previous approaches

## Assumptions:

- for triangulation : we assume that the pose is correctly estimated
- for pose estimation : we assume that the 3D locations are accurate
- in reality all estimations we perform are noisy


## Limitations of previous approaches

## Assumptions:

- for triangulation : we assume that the pose is correctly estimated
- for pose estimation : we assume that the 3D locations are accurate
- in reality all estimations we perform are noisy
- if we also apply the process iteratively (triangulation, pose estimation and repeat) the errors will be amplified (drift)


## Global optimization - initial step

Since computational power is widely available for autonomous systems, we favour a solution which minimizes jointly with respect to the point locations and to the poses.

Initial step :

## Global optimization - initial step

Since computational power is widely available for autonomous systems, we favour a solution which minimizes jointly with respect to the point locations and to the poses.

## Initial step :

- we will just add a new unknown pose to the previous set of variables and refine it :

$$
\hat{\mathbf{s}}_{\tau}=\underset{\mathbf{s}_{\tau}}{\arg \min } \sum_{j} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)^{T} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)
$$

## Global optimization - initial step

Since computational power is widely available for autonomous systems, we favour a solution which minimizes jointly with respect to the point locations and to the poses.

## Initial step :

- we will just add a new unknown pose to the previous set of variables and refine it :

$$
\hat{\mathbf{s}}_{\tau}=\underset{\mathbf{s}_{\tau}}{\arg \min } \sum_{j} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)^{T} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)
$$

- observation : this step does not modify $\mathbf{X}$


## Global optimization - initial step

Since computational power is widely available for autonomous systems, we favour a solution which minimizes jointly with respect to the point locations and to the poses.

## Initial step :

- we will just add a new unknown pose to the previous set of variables and refine it :

$$
\hat{\mathbf{s}}_{\tau}=\underset{\mathbf{s}_{\tau}}{\arg \min } \sum_{j} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)^{T} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j}, \mathbf{z}_{j, \tau}\right)
$$

- observation : this step does not modify $\mathbf{X}$
- the interest of the initial step is just to provide a quality initialization for $\mathbf{s}_{\tau}$ as $\hat{\mathbf{s}}_{t}$


## Global optimization - final step

We compute the MAP (Maximum A Posteriori) for the maximum amount of preliminary estimations and observations that we have at that moment (brutal, massive optimization). The solution we search this time is provided by :

$$
\tilde{\mathbf{S}}_{0: t}, \tilde{\mathbf{X}}=\underset{\mathbf{S}_{0: t}, \mathbf{X}}{\arg \min } \sum_{\tau=0}^{T} \sum_{j=1}^{M} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j, \tau}, z_{j, \tau}\right)^{T} e\left(\mathbf{s}_{\tau}, \mathbf{X}_{j, \tau}, z_{j, \tau}\right)
$$

The complexity of this algorithm, once we exploit the sparseness of its Jacobian : $O\left(T^{3}+M T^{2}\right)$, which is very interesting since $M \gg T$.

## Towards real time reconstruction



An example of configuration : 5207 3D points, 54 poses, 24609 projections, 15945 variables, 21 it ., 7.99 sec .
Not fast enough !

- Selection of key-frames
- Parallel execution of tracking et BA (initial and final steps)
- Limit the number of iterations (when needed)
- Local Bundle Adjustment


## Typical architecture for RT optimization



