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The 3D representation of points

In the 3D space :

p = (X ,Y ,Z )T =





X

Y

Z





︸ ︷︷ ︸

initial point

p′ = (X ′,Y ′,Z ′)T =





X ′

Y ′

Z ′





︸ ︷︷ ︸

same point in different coordinate system
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Euclidean transform p′ = Rp+ t becomes in homogeneous coordinates :
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or otherwise p̃′ =

[
R t
0T 1

]

p̃, avec RTR = I, detR = 1
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or otherwise p̃′ =

[
R t
0T 1

]

p̃, avec RTR = I, detR = 1

◮ the transform has six degrees of freedom (three elementary rotations, three
elementary translations)

◮ we discard the˜for the sake of simplicity, but when it makes sense the
variables are homogeneous
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The pinhole camera model

3D ⇒ 2D projection

◮ In the 3D focal plance : (X ,Y ,Z )T ⇒ (fX/Z , fY /Z , f )T

◮ In the image 2D plane : (X ,Y ,Z )T ⇒ (fX/Z , fY /Z ) = (x , y)
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The pinhole camera model

The image plane projection (fX/Z , fY /Z ) gives in homogeneous coordinates :
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f

f
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 ·





1 0
1 0

1 0



 ·
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Y

Z
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= diag(f , f , 1)[I|0]X
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Problem : usually, the chosen reference in the image plane is not the projection of
the optical axis :
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The pinhole camera model

The image plane projection (fX/Z , fY /Z ) gives in homogeneous coordinates :




fX

fY

Z



 =





f

f

1



 ·





1 0
1 0

1 0



 ·
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Y

Z

1






= diag(f , f , 1)[I|0]X

Problem : usually, the chosen reference in the image plane is not the projection of
the optical axis :

This gives in the reference system we use commonly :

(X ,Y ,Z ) ⇒ (fX/Z + px , fY /Z + py )
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The pinhole camera model

The image plane projection (fX/Z , fY /Z ) gives in homogeneous coordinates :
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= diag(f , f , 1)[I|0]X

K - intrinsic calibration matrix
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The pinhole camera model

The image plane projection (fX/Z , fY /Z ) gives in homogeneous coordinates :
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1 0
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 ·
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Y

Z

1






= diag(f , f , 1)[I|0]X

K - intrinsic calibration matrix

◮ needed to define the projection 2D ⇔ 3D

◮ constant as long as the optical system is not physically adjusted

◮ usually determined using specific calibration objects (the most common ones
being planar checkerboards)
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Transformation to an inertial (fixed) frame

Final step of the modelling : we express the 3D variables in a frame which is not
attached to the camera and which is fixed (typical setting for mobile robotics) :

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap III : Two-view Geometry (8/25)



Transformation to an inertial (fixed) frame

Final step of the modelling : we express the 3D variables in a frame which is not
attached to the camera and which is fixed (typical setting for mobile robotics) :
By denoting as C the center of the camera in “world” coordinates, the transform
world to camera is expressed as

Xcam =

[
R −RC
0T 1

]

X

and then instead of projecting the camera coordinates towards the image frame :

x = K
[
I|0

]
Xcam

we rely on the projection of the world coordinates directly towards the image
frame :

x = K
[
R| − RC

]
X = K

[
R|t

]
X = PX
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Homogeneous representation of 2D lines and points

◮ A 2D line is defined by ax + by + c = 0 i.e. a parametrization l = (a, b, c).
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◮ ∀k ∈ R \ {0}, we denote thus (kx , ky , k) as the homogeneous representation
of the 2D point (x , y).

◮ An arbitrary homogeneous x = (x1, x2, x3) corresponds to the 2D point
(x1/x3, x2/x3).

◮ Result : the point x lies on the line l if and only if xT l = 0.
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Homogeneous representation of 2D lines and points
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◮ An arbitrary homogeneous x = (x1, x2, x3) corresponds to the 2D point
(x1/x3, x2/x3).

◮ Result : the point x lies on the line l if and only if xT l = 0.
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Homogeneous representation of 2D lines and points

◮ A 2D line is defined by ax + by + c = 0 i.e. a parametrization l = (a, b, c).

◮ However, kax + kby + kc = 0 corresponds to the same line, thus
l = (ka, kb, kc), ∀k ∈ R \ {0}

◮ A 2D point (x , y) lies on a line (a, b, c) if ax + by + c = 0.

◮ This may be expressed as (x , y , 1)T · (a, b, c) = (x , y , 1)T · l = 0.

◮ ∀k ∈ R \ {0}, (kx , ky , k)T · l = 0 if and only if (x , y , 1)T · l = 0.

◮ ∀k ∈ R \ {0}, we denote thus (kx , ky , k) as the homogeneous representation
of the 2D point (x , y).

◮ An arbitrary homogeneous x = (x1, x2, x3) corresponds to the 2D point
(x1/x3, x2/x3).

◮ Result : the point x lies on the line l if and only if xT l = 0.

◮ Result : the intersection of two lines l and l′ is the point x = l× l′.

◮ Result : the line through two points x and x′ is l = x× x′.
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Some quick vector operations

x× y = x× · y

∣
∣
∣
∣
∣
∣

i j k
x1 x2 x3
y1 y2 y3

∣
∣
∣
∣
∣
∣

=





x2y3 − x3y2
x3y1 − x1y3
x1y2 − y1x2





x× =





0 −x3 x2
x3 0 −x1
−x2 x1 0





Mixed product : xT (y × z) = |x y z| (the volume of the parallelepiped defined by
the three vectors)
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Singular value decomposition

Theorem (SVD) :
Let A be an m × n matrix. A may be expressed as :

A = UΣVT =

min(m,n)
∑

i=1

σiUiV
T
i

where Σ is a m × n diagonal matrix with σi = Σii ≥ 0, and U (m ×m) and V
(n × n) are composed of orthornormal columns
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Singular value decomposition

Theorem (SVD) :
Let A be an m × n matrix. A may be expressed as :

A = UΣVT =

min(m,n)
∑

i=1

σiUiV
T
i

where Σ is a m × n diagonal matrix with σi = Σii ≥ 0, and U (m ×m) and V
(n × n) are composed of orthornormal columns

◮ The rank of A is the number of σi > 0

◮ An orthonormal basis for the null space of A is composed of Vi for indices i
such that σi = 0

◮ By convention, the σi are aligned in descending order by the decomposition
algorithms.
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Why is this part “fundamental” ? (cheap joke)

What we can get from two views :
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Why is this part “fundamental” ? (cheap joke)

What we can get from two views :

◮ Sparse 3D reconstruction

◮ Relative camera pose estimation

◮ Parametric surface fitting

◮ Dense 3D reconstruction (more complex work required for this)
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Why is this part “fundamental” ? (cheap joke)

What we can get from two views :

◮ Sparse 3D reconstruction

◮ Relative camera pose estimation

◮ Parametric surface fitting

◮ Dense 3D reconstruction (more complex work required for this)

◮ ... but also many multi-view algorithms extend nicely from two-view analysis
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The anatomy of two views

Some important observations :

◮ the pixel projection is along the ray defined by the 3D point and the camera
center (i.e. as for x, X and C)
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◮ conversely, if x and x′ do correspond to the same 3D point, the two rays
intersect
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The anatomy of two views

Some important observations :

◮ the pixel projection is along the ray defined by the 3D point and the camera
center (i.e. as for x, X and C)

◮ conversely, if x and x′ do correspond to the same 3D point, the two rays
intersect

◮ the two rays define a plane π denoted as epipolar plane

◮ the epipolar plane also contains the ray defined by the camera centers
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The anatomy of two views
From the projection in the two views we have :

λx = KX λ′x′ = K′(RX+ t)
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By eliminating X we get :

X = λK−1x λ′x′ = K′(λRK−1x+ t)
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From the projection in the two views we have :

λx = KX λ′x′ = K′(RX+ t)

By eliminating X we get :

X = λK−1x λ′x′ = K′(λRK−1x+ t)

λ′K′−1
x′ = λRK−1x+ t
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The anatomy of two views
From the projection in the two views we have :

λx = KX λ′x′ = K′(RX+ t)

By eliminating X we get :

X = λK−1x λ′x′ = K′(λRK−1x+ t)

λ′K′−1
x′ = λRK−1x+ t

We eliminate the sum by applying a cross product with t :

λ′t×K′−1
x′ = λt×RK−1x
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X = λK−1x λ′x′ = K′(λRK−1x+ t)

λ′K′−1
x′ = λRK−1x+ t

We eliminate the sum by applying a cross product with t :

λ′t×K′−1
x′ = λt×RK−1x

We multiply by K′−1x′ in order to get a null mixed product :

0 = λK′−1
x′t×RK−1x
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The anatomy of two views
From the projection in the two views we have :

λx = KX λ′x′ = K′(RX+ t)

By eliminating X we get :

X = λK−1x λ′x′ = K′(λRK−1x+ t)

λ′K′−1
x′ = λRK−1x+ t

We eliminate the sum by applying a cross product with t :

λ′t×K′−1
x′ = λt×RK−1x

We multiply by K′−1x′ in order to get a null mixed product :

0 = λK′−1
x′t×RK−1x

Finally, by transposing K′−1x′ and ignoring the scalar λ we get :

x′
T
K′−T

t×RK−1

︸ ︷︷ ︸

F

x = 0
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The fundamental matrix F

x′
T
Fx = 0

◮ applying the F constraint does not require information about the scene 3D
structure
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The fundamental matrix F
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line ...

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap III : Two-view Geometry (17/25)



The fundamental matrix F

x′
T
Fx = 0

◮ applying the F constraint does not require information about the scene 3D
structure

◮ F is valid for the whole image

◮ we may apply the constraint without performing/knowing the camera
calibration

◮ For a given point x′,we denote by l′ its corresponding epipolar line. It follows
from x′

T
Fx = 0 that

l′ = Fx

◮ Similarly, l = FTx′

◮ The fundamental matrix constraint translates to a search along the epipolar
line ...

◮ ... but also F = K′−T
t×RK

−1 encodes, along with the calibration matrices,
the rotation and translation between views
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The fundamental matrix F

Theorem
The condition which is necessary and sufficient for a matrix F to be a fundamental
matrix is that

det(F) = 0

Multiple ways to notice that F is rank deficient :

◮ it follows from the fact that det(t×) = 0
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Computing F - the 8 point algorithm

Straightforward approach :

◮ each observation (match) provides a constraint on F as x′i
T
Fxi = 0
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Computing F - the 8 point algorithm

Straightforward approach :

◮ each observation (match) provides a constraint on F as x′i
T
Fxi = 0

◮ if we group the unknowns as the column vector f = [f11 f12 . . . f33], the
constraint may be expressed as aif = 0, with ai a row vector

◮ only 8 parameters are independent, since the scale is not determined

◮ the search for f may be expressed as :

min
f

‖Af‖ , subject to ‖f‖ = 1

where A = [a1 a2 . . . a8]

◮ Solution : f is the last column of V, where A = UDVT is the SVD of A

◮ Proof :
∥
∥UDVT f

∥
∥ =

∥
∥DVT f

∥
∥, and ‖f‖ =

∥
∥VT f

∥
∥. We have to minimize

∥
∥DVT f

∥
∥ subject to

∥
∥VT f

∥
∥ = 1. If y = VT f, then we minimize ‖Dy‖ subject to ‖y‖ = 1. Since D is diagonal

with values in descending order, it means that y = (0, 0 . . . , 1), and f = Vy is the last

column of V. (A5.3, Hartley and Zisserman)
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Considerations - the 8 point algorithm

Straightforward approach :

◮ major issue : the solution F may violate the rank constraint !
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Considerations - the 8 point algorithm

Straightforward approach :

◮ major issue : the solution F may violate the rank constraint !

◮ Hack : decompose F using SVD, set σ3 = 0 and recompose.

◮ What about searching directly for a rank 2 solution for F ?

The 7 point algorithm :

◮ Use 7 constraints for Af = 0

◮ Use SVD on A in order to find the vectors f1 and f2 that span the null space
(the kernel) of A

◮ Find an element in the kernel expressed by the linear combination f = f1 +αf2
which also satisfies det(F) = 0

◮ det(F1 + αF2) is a third degree polynomial, so up to three potential solutions
may be recovered

◮ This algorithm is also preferred as fewer observations are needed
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Outline

The 3D representation of points

The pinhole camera model

Applying a coordinate transformation

Homogeneous representations and algebraic operations

The fundamental matrix

The essential matrix

Rectification
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Using the camera calibration and the essential matrix

If the calibration matrices K and K′ are known :

◮ we may recover the pose information from F = K′−T
t×RK

−1 :

E = t×R = K′TFK
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◮ E has five degrees of freedom (and not six) because the relative translation t
has a scale ambiguity (just as F).
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E = t×R = K′TFK
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has a scale ambiguity (just as F).

◮ Beside det(E) = 0, there is an additional constraint with respect to F, which
results from the structure of E :
Theorem : The condition which is necessary and sufficient for a matrix E to be an essential

matrix is that two of its singular values be equal, and the third one be 0.
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◮ Beside det(E) = 0, there is an additional constraint with respect to F, which
results from the structure of E :
Theorem : The condition which is necessary and sufficient for a matrix E to be an essential

matrix is that two of its singular values be equal, and the third one be 0.

◮ There are thus at least five points needed for recovering directly E from an
image pair, assuming that the calibration matrices are known, and there is an
algorithm which solves this minimal problem( Nistér, David. ”An efficient solution

to the five-point relative pose problem.” IEEE Transactions on Pattern Analysis and

Machine Intelligence (2004). )
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Using the camera calibration and the essential matrix

If the calibration matrices K and K′ are known :

◮ we may recover the pose information from F = K′−T
t×RK

−1 :

E = t×R = K′TFK

◮ E has five degrees of freedom (and not six) because the relative translation t
has a scale ambiguity (just as F).

◮ Beside det(E) = 0, there is an additional constraint with respect to F, which
results from the structure of E :
Theorem : The condition which is necessary and sufficient for a matrix E to be an essential

matrix is that two of its singular values be equal, and the third one be 0.

◮ There are thus at least five points needed for recovering directly E from an
image pair, assuming that the calibration matrices are known, and there is an
algorithm which solves this minimal problem( Nistér, David. ”An efficient solution

to the five-point relative pose problem.” IEEE Transactions on Pattern Analysis and

Machine Intelligence (2004). )

◮ Knowing E : interesting for relative pose estimation

◮ Main disadvantage : K and K′ are required to get to E
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Recovering R and t from E

It has been shown that the decomposition of E is possible and there are actually
four valid solutions (9.6.2, Hartley and Zisserman) :

◮ Identify the correct solution : cheirality check (the 3D points have to be in
front of the camera) with an additional match from the two views
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Rectification

Using F, we restrict the search for the corresponding projection x′ of a point x to a line (the
epipolar line l′ = Fx).

Stereo rectification
◮ Apply an adjustment to the images in order to get horizontal epipolar lines in both views
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algorithm for rectification of stereo pairs. Mach. Vision Appl 2000 )
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Rectification

Using F, we restrict the search for the corresponding projection x′ of a point x to a line (the
epipolar line l′ = Fx).

Stereo rectification
◮ Apply an adjustment to the images in order to get horizontal epipolar lines in both views

◮ The search for x′ takes place simply along the same corresponding row in the second
image : interesting for dense correspondence

◮ This implies that epipoles are at horizontal infinity : e = e′ = [1 0 0]T

◮ Apply a virtual rotation of cameras ( Fusiello, A. ; Trucco, E. ; Verri, A. A compact
algorithm for rectification of stereo pairs. Mach. Vision Appl 2000 )

◮ An interpolation is required for creating the new images, but high computation gain overall
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