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The 3D representation of points

In the 3D space :

X X’
T / l 1 71\T !
p=(X,Y,.2)T=| Y p=(X.Y,Z)VT=|Y
V4 V4

initial point same point in different coordinate system
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The 3D representation of points

In the 3D space :

X X'
T / l 1 71\T !
p=(X,Y,.2)T=| Y p=(X.Y,Z)VT=|Y
V4 V4

initial point same point in different coordinate system

Euclidean transform p’ = Rp + t becomes in homogeneous coordinates :

X' n n2 n3 t X

Yoo | m ons tof |Y

Z' | | m o2 m3ots V4

1 0 0 0 1 1
R

or otherwise p/ = [ ; ] p, avec RTR =1, detR =1

0T
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The 3D representation of points

In the 3D space :

X X’
T / / 1 NT /
p=(X.Y,2)T=| v p=(XY.Z)T =Y
V4 z'

initial point same point in different coordinate system

Euclidean transform p’ = Rp + t becomes in homogeneous coordinates :

X' ni n2 n3z t X
Yol _ | me s | | Y
Z' || B o2 3t Z
1 0 0 0 1 1
R

] p, avec R'R=1,detR=1

o, t
or otherwise p’ = [ o7 1

> the transform has six degrees of freedom (three elementary rotations, three

elementary translations)
» we discard the~for the sake of simplicity, but when it makes sense the
variables are homogeneous
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Qutline

@ The pinhole camera model
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The pinhole camera model

AN z
\ N\ principal axis

camera

centre image plane

3D = 2D projection

‘fY/Z

» In the 3D focal plance : (X,Y,2)T = (X/Z,fY/Z,f)T
» In the image 2D plane : (X,Y,2)T = (X/Z,fY/Z) = (x,y)
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The pinhole camera model

The image plane projection (fX/Z, Y /Z) gives in homogeneous coordinates :

X F 1 0 );
v | = f . 10 V| = diag(r. £, 1)[10]X
z 1 10 .
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The pinhole camera model

The image plane projection (fX/Z, Y /Z) gives in homogeneous coordinates :

X F 1 0 );
v | = f . 10 V| = diag(r. £, 1)[10]X
z 1 10 .

Problem : usually, the chosen reference in the image plane is not the projection of
the optical axis :

_eX

A x

\ principal axis

camera
centre

=" image plan

principal point
(perpendicular intersection point of
principal axis and image plane)
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The pinhole camera model

The image plane projection (fX/Z, Y /Z) gives in homogeneous coordinates :

X F 1 0 X
v | = f . 10| J | =diag(r.f, 100X
z 1 10 .

Problem : usually, the chosen reference in the image plane is not the projection of
the optical axis :

image plane~ | . .

principal point

(perpendicular intersection point of
principal axis and image plane)

This gives in the reference system we use commonly :
(X,Y,2) = ((X/Z + px, Y/ Z + py)
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The pinhole camera model

The image plane projection (fX/Z, Y /Z) gives in homogeneous coordinates :

X f Px 1 0 );
Y | = fp |- 1 0 7 = diag(f, f, 1)[1|0]X
z 1 10
—_—— 1
K

K - intrinsic calibration matrix
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The pinhole camera model

The image plane projection (fX/Z, Y /Z) gives in homogeneous coordinates :

X f Px 1 0 );
Y | = fp |- 1 0 7 = diag(f, f, 1)[1|0]X
z 1 10
—_—— 1
K

K - intrinsic calibration matrix

> needed to define the projection 2D < 3D
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The pinhole camera model

The image plane projection (fX/Z, Y /Z) gives in homogeneous coordinates :

X f Px 1 0 );
Y | = fp |- 1 0 7 = diag(f, f, 1)[1|0]X
z 1 10
—_—— 1
K

K - intrinsic calibration matrix
> needed to define the projection 2D < 3D

» constant as long as the optical system is not physically adjusted
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The pinhole camera model

The image plane projection (fX/Z, Y /Z) gives in homogeneous coordinates :

X f Px 1 0 );
Y | = fp |- 1 0 7 = diag(f, f, 1)[1|0]X
z 1 10
—_—— 1
K

K - intrinsic calibration matrix
> needed to define the projection 2D < 3D
» constant as long as the optical system is not physically adjusted

» usually determined using specific calibration objects (the most common ones
being planar checkerboards)
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Qutline

@ Applying a coordinate transformation
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Transformation to an inertial (fixed) frame

Final step of the modelling : we express the 3D variables in a frame which is not
attached to the camera and which is fixed (typical setting for mobile robotics) :

Y
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Transformation to an inertial (fixed) frame

Final step of the modelling : we express the 3D variables in a frame which is not
attached to the camera and which is fixed (typical setting for mobile robotics) :
By denoting as C the center of the camera in “world” coordinates, the transform
world to camera is expressed as

R —RC
Xcam = |: OT 1 :| X

and then instead of projecting the camera coordinates towards the image frame :

x = K[1/0] X carn

we rely on the projection of the world coordinates directly towards the image
frame :

x = K[R| - RC]X = K[R[t]X = PX
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Qutline

@ Homogeneous representations and algebraic operations
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Homogeneous representation of 2D lines and points

> A 2D line is defined by ax + by + ¢ = 0 i.e. a parametrization | = (a, b, ¢).
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Homogeneous representation of 2D lines and points

> A 2D line is defined by ax + by + ¢ = 0 i.e. a parametrization | = (a, b, ¢).

» However, kax + kby + kc = 0 corresponds to the same line, thus
| = (ka, kb, kc),Vk € R\ {0}
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Homogeneous representation of 2D lines and points

> A 2D line is defined by ax + by + ¢ = 0 i.e. a parametrization | = (a, b, ¢).

» However, kax + kby + kc = 0 corresponds to the same line, thus
| = (ka, kb, kc),Vk € R\ {0}
» A 2D point (x, y) lies on a line (a, b, ¢) if ax + by + ¢ = 0.
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Homogeneous representation of 2D lines and points

> A 2D line is defined by ax + by + ¢ = 0 i.e. a parametrization | = (a, b, ¢).
» However, kax + kby + kc = 0 corresponds to the same line, thus
| = (ka, kb, kc),Vk € R\ {0}
» A 2D point (x, y) lies on a line (a, b, ¢) if ax + by + ¢ = 0.
» This may be expressed as (x,y,1)" - (a, b,c) = (x,y,1)T -1 =0.
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Homogeneous representation of 2D lines and points

> A 2D line is defined by ax + by + ¢ = 0 i.e. a parametrization | = (a, b, ¢).
» However, kax + kby + kc = 0 corresponds to the same line, thus

| = (ka, kb, kc),Vk € R\ {0}

A 2D point (x, y) lies on a line (a, b, ¢) if ax + by + ¢ = 0.

This may be expressed as (x,y,1)" - (a, b,c) = (x,y,1)T -1 =0.

Vk € R\ {0}, (kx, ky, k)T -1 =0 if and only if (x,y,1)7 -1=0.

v

v

v
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Homogeneous representation of 2D lines and points

> A 2D line is defined by ax + by + ¢ = 0 i.e. a parametrization | = (a, b, ¢).
» However, kax + kby + kc = 0 corresponds to the same line, thus

| = (ka, kb, kc), ¥k € R \ {0}

A 2D point (x, y) lies on a line (a, b, ¢) if ax + by + ¢ = 0.

This may be expressed as (x,y,1)" - (a, b,c) = (x,y,1)T -1 =0.

Vk € R\ {0}, (kx, ky, k)T -1 =0 if and only if (x,y,1)T -1=0.

Vk € R\ {0}, we denote thus (kx, ky, k) as the homogeneous representation
of the 2D point (x, y).

vV vV.v Y
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Homogeneous representation of 2D lines and points

> A 2D line is defined by ax + by + ¢ = 0 i.e. a parametrization | = (a, b, ¢).
» However, kax + kby + kc = 0 corresponds to the same line, thus

| = (ka, kb, kc),Vk € R\ {0}

A 2D point (x, y) lies on a line (a, b, ¢) if ax + by + ¢ = 0.

This may be expressed as (x,y,1)" - (a, b,c) = (x,y,1)T -1 =0.

Vk € R\ {0}, (kx, ky, k)T -1 =0 if and only if (x,y,1)T -1=0.

Vk € R\ {0}, we denote thus (kx, ky, k) as the homogeneous representation
of the 2D point (x, y).

An arbitrary homogeneous x = (x1, x2, x3) corresponds to the 2D point
(Xl/X3,X2/X3).

vV vV.v Y

v
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Homogeneous representation of 2D lines and points

> A 2D line is defined by ax + by + ¢ = 0 i.e. a parametrization | = (a, b, ¢).

» However, kax + kby + kc = 0 corresponds to the same line, thus

| = (ka, kb, kc),Vk € R\ {0}

A 2D point (x, y) lies on a line (a, b, ¢) if ax + by + ¢ = 0.

This may be expressed as (x,y,1)" - (a, b,c) = (x,y,1)T -1 =0.

Vk € R\ {0}, (kx, ky, k)T -1 =0 if and only if (x,y,1)T -1=0.

Vk € R\ {0}, we denote thus (kx, ky, k) as the homogeneous representation

of the 2D point (x, y).

> An arbitrary homogeneous x = (x1, x2, x3) corresponds to the 2D point
(Xl/X3,X2/X3).

» Result : the point x lies on the line I if and only if x"1 = 0.

vV vV.v Y
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Homogeneous representation of 2D lines and points

> A 2D line is defined by ax + by + ¢ = 0 i.e. a parametrization | = (a, b, ¢).

» However, kax + kby + kc = 0 corresponds to the same line, thus

| = (ka, kb, kc),Vk € R\ {0}

A 2D point (x, y) lies on a line (a, b, ¢) if ax + by + ¢ = 0.

This may be expressed as (x,y,1)" - (a, b,c) = (x,y,1)T -1 =0.

Vk € R\ {0}, (kx, ky, k)T -1 =0 if and only if (x,y,1)T -1=0.

Vk € R\ {0}, we denote thus (kx, ky, k) as the homogeneous representation

of the 2D point (x, y).

> An arbitrary homogeneous x = (x1, x2, x3) corresponds to the 2D point
(X1/X3,X2/X3).

» Result : the point x lies on the line I if and only if x"1 = 0.

vV vV.v Y

> Result : the intersection of two lines | and I' is the point x =1 x I’
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Homogeneous representation of 2D lines and points

> A 2D line is defined by ax + by + ¢ = 0 i.e. a parametrization | = (a, b, ¢).

» However, kax + kby + kc = 0 corresponds to the same line, thus
| = (ka, kb, kc),Vk € R\ {0}

A 2D point (x, y) lies on a line (a, b, ¢) if ax + by + ¢ = 0.
This may be expressed as (x,y,1)" - (a, b,c) = (x,y,1)T -1 =0.
Vk € R\ {0}, (kx, ky, k)T -1 =0 if and only if (x,y,1)7 -1=0.

Vk € R\ {0}, we denote thus (kx, ky, k) as the homogeneous representation
of the 2D point (x, y).

vV vV.v Y

> An arbitrary homogeneous x = (x1, x2, x3) corresponds to the 2D point
(X1/X3,X2/X3).

» Result : the point x lies on the line I if and only if x"1 = 0.

> Result : the intersection of two lines | and I' is the point x =1 x I’

> Result : the line through two points x and x’ is | = x x x'.
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Some quick vector operations

i j k XoY3 — X3)2
XXY=Xx Y| X1 X2 X3 |= | X3¥y1— X1)3
yi Y2 y3 X1Y2 — y1X2
0 —X3 X2
Xy = X3 0 —X1
—X2 X1 0

Mixed product : x"(y x z) = |x y z/| (the volume of the parallelepiped defined by
the three vectors)
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Singular value decomposition

Theorem (SVD) :

Let A be an m x n matrix. A may be expressed as :

min(m,n)
A-usvT = 3 U]
i=1

where X is a m x n diagonal matrix with 0; = X; > 0, and U (m x m) and V
(n x n) are composed of orthornormal columns
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Singular value decomposition

Theorem (SVD) :

Let A be an m x n matrix. A may be expressed as :

min(m,n)
A-usvT = 3 U]
i=1
where X is a m x n diagonal matrix with 0; = X; > 0, and U (m x m) and V
(n x n) are composed of orthornormal columns
» The rank of A is the number of o; > 0
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Singular value decomposition

Theorem (SVD) :

Let A be an m x n matrix. A may be expressed as :
min(m,n)
A-UuzvT = Y ouvT
i=1
where X is a m x n diagonal matrix with 0; = X; > 0, and U (m x m) and V
(n x n) are composed of orthornormal columns
» The rank of A is the number of o; > 0

» An orthonormal basis for the null space of A is composed of V; for indices i
such that 0; =0
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Singular value decomposition

Theorem (SVD) :

Let A be an m x n matrix. A may be expressed as :

min(m,n)
A-usvT = 3 U]
i=1

where X is a m x n diagonal matrix with 0; = X; > 0, and U (m x m) and V
(n x n) are composed of orthornormal columns
» The rank of A is the number of o; > 0
» An orthonormal basis for the null space of A is composed of V; for indices i
such that 0; =0
» By convention, the o; are aligned in descending order by the decomposition
algorithms.
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Qutline

@ The fundamental matrix
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Why is this part “fundamental” ? (cheap joke)

What we can get from two views :

Original Images
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Why is this part “fundamental” ? (cheap joke)

What we can get from two views :

» Sparse 3D reconstruction
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Why is this part “fundamental” ? (cheap joke)

What we can get from two views :

» Sparse 3D reconstruction

» Relative camera pose estimation
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Why is this part “fundamental” ? (cheap joke)

What we can get from two views :
» Sparse 3D reconstruction
» Relative camera pose estimation

» Parametric surface fitting
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Why is this part “fundamental” ? (cheap joke)

What we can get from two views :
» Sparse 3D reconstruction
» Relative camera pose estimation
» Parametric surface fitting
> Dense 3D reconstruction (more complex work required for this)
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Why is this part “fundamental” ? (cheap joke)

What we can get from two views :
Sparse 3D reconstruction

Relative camera pose estimation
Parametric surface fitting

Dense 3D reconstruction (more complex work required for this)

vV vV vV Vv Y

... but also many multi-view algorithms extend nicely from two-view analysis

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap 11l : Two-view Geometry (14/25)



The anatomy of two views

Some important observations :

» the pixel projection is along the ray defined by the 3D point and the camera
center (i.e. as for x, X and C)

cpipolacplane 70
AN
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The anatomy of two views

Some important observations :

» the pixel projection is along the ray defined by the 3D point and the camera
center (i.e. as for x, X and C)

> conversely, if x and x’ do correspond to the same 3D point, the two rays
intersect

cpipolacplane 70
AN
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The anatomy of two views

Some important observations :

» the pixel projection is along the ray defined by the 3D point and the camera
center (i.e. as for x, X and C)

» conversely, if x and x’ do correspond to the same 3D point, the two rays
intersect

» the two rays define a plane 7 denoted as epipolar plane

cpipolacplane 70
AN
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The anatomy of two views

Some important observations :

» the pixel projection is along the ray defined by the 3D point and the camera
center (i.e. as for x, X and C)

» conversely, if x and x’ do correspond to the same 3D point, the two rays
intersect

» the two rays define a plane 7 denoted as epipolar plane

> the epipolar plane also contains the ray defined by the camera centers
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The anatomy of two views

From the projection in the two views we have :

Ax =KX Mx' =K'(RX+1t)

— epipolar line
L // for x
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The anatomy of two views

From the projection in the two views we have :
Ax =KX Mx' =K'(RX+1t)

By eliminating X we get :
X=XK"1x XNx' =K/'(ARK 'x+t)
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The anatomy of two views

From the projection in the two views we have :
Ax =KX Mx' =K'(RX+1t)

By eliminating X we get :
X=XK"1x XNx' =K/'(ARK 'x+t)

NK 7' = ARK Ix + t
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The anatomy of two views

From the projection in the two views we have :
Ax =KX Mx' =K'(RX+1t)
By eliminating X we get :

X=XK"1x XNx' =K/'(ARK 'x+t)

NK 7' = ARK Ix + t
We eliminate the sum by applying a cross product with t :
NexK 7% = At RK~1x

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap Il : Two-view Geometry

(16/25)



The anatomy of two views

From the projection in the two views we have :
Ax =KX Mx' =K'(RX+1t)
By eliminating X we get :

X=XK"1x XNx' =K/'(ARK 'x+t)

NK 7' = ARK Ix + t
We eliminate the sum by applying a cross product with t :

NixK' "Ix = At RK!x

We multiply by K’ ~!x’ in order to get a null mixed product :
0= AK' " 'x'tx RK™Ix
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The anatomy of two views

From the projection in the two views we have :
Ax =KX Mx' =K'(RX+1t)
By eliminating X we get :
X=XK"1x XNx' =K/'(ARK 'x+t)
NK 7' = ARK Ix + t
We eliminate the sum by applying a cross product with t :
NexK 7% = At RK~1x
We multiply by K’ ~!x’ in order to get a null mixed product :

0 = AK' X't RK™x

Finally, by transposing K'~!x’ and ignoring the scalar A we get :
xTK TtuRK1x=0

————
F
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The fundamental matrix F

X Fx=0

» applying the F constraint does not require information about the scene 3D
structure
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The fundamental matrix F

X Fx=0

» applying the F constraint does not require information about the scene 3D
structure

» F is valid for the whole image
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The fundamental matrix F

X Fx=0

» applying the F constraint does not require information about the scene 3D
structure

» F is valid for the whole image

> we may apply the constraint without performing/knowing the camera
calibration
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The fundamental matrix F

X Fx=0

» applying the F constraint does not require information about the scene 3D
structure

» F is valid for the whole image

> we may apply the constraint without performing/knowing the camera
calibration

» For a given point x’,we denote by I’ its corresponding epipolar line. It follows
from x'"Fx = 0 that
I' = Fx
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The fundamental matrix F

X Fx=0

» applying the F constraint does not require information about the scene 3D
structure

» F is valid for the whole image

> we may apply the constraint without performing/knowing the camera
calibration

» For a given point x’,we denote by I’ its corresponding epipolar line. It follows
from x'"Fx = 0 that
I' = Fx

» Similarly, | = FTx’/
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The fundamental matrix F

X Fx=0

» applying the F constraint does not require information about the scene 3D
structure

» F is valid for the whole image

> we may apply the constraint without performing/knowing the camera
calibration

» For a given point x’,we denote by I’ its corresponding epipolar line. It follows
from x'T Fx = 0 that
I' = Fx
» Similarly, | = FTx’/

» The fundamental matrix constraint translates to a search along the epipolar
line ...
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The fundamental matrix F

X Fx=0

» applying the F constraint does not require information about the scene 3D
structure

» F is valid for the whole image

> we may apply the constraint without performing/knowing the camera
calibration

» For a given point x’,we denote by I’ its corresponding epipolar line. It follows
from x'T Fx = 0 that
I' = Fx
» Similarly, | = FTx’/

» The fundamental matrix constraint translates to a search along the epipolar
line ...

» ... butalso F = K’thXRK_1 encodes, along with the calibration matrices,
the rotation and translation between views
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The fundamental matrix F

Theorem . . .
The condition which is necessary and sufficient for a matrix F to be a fundamental

matrix is that
det(F) =0

Multiple ways to notice that F is rank deficient :
> it follows from the fact that det(tx) =0
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matrix is that
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> it follows from the fact that det(tx) =0
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Computing F - the 8 point algorithm

Straightforward approach :
> each observation (match) provides a constraint on F as xi’TFx; =0
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> if we group the unknowns as the column vector f = [fi1 fi2. .. f33], the
constraint may be expressed as ajf = 0, with a; a row vector

> only 8 parameters are independent, since the scale is not determined

> the search for f may be expressed as :
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Computing F - the 8 point algorithm

Straightforward approach :
> each observation (match) provides a constraint on F as xi’TFx; =0

> if we group the unknowns as the column vector f = [fi1 fi2. .. f33], the
constraint may be expressed as ajf = 0, with a; a row vector

> only 8 parameters are independent, since the scale is not determined
> the search for f may be expressed as :

mfin ||Af]| , subject to||f|| =1

where A = [a1 a... ag]
» Solution : f is the last column of V, where A = UDV7 is the SVD of A
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Computing F - the 8 point algorithm

Straightforward approach :

>

>

E. Aldea

each observation (match) provides a constraint on F as xi’TFx; =0

if we group the unknowns as the column vector f = [fi1 fi2. .. f33], the
constraint may be expressed as ajf = 0, with a; a row vector

only 8 parameters are independent, since the scale is not determined

the search for f may be expressed as :

mfin ||Af]| , subject to||f|| =1

where A = [a; ay .. .ag]

Solution : f is the last column of V, where A = UDV7 is the SVD of A
Proof :

[[UDVTf|| = ||IDVTf||, and |If|| = |[VTf||. We have to minimize || DVTf|| subject to
||VTf|| =1. If y = VTf, then we minimize ||Dy|| subject to ||y|| = 1. Since D is diagonal
with values in descending order, it means that y = (0,0...,1), and f = Vy is the last
column of V. (A5.3, Hartley and Zisserman)
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Considerations - the 8 point algorithm

Straightforward approach :
> major issue : the solution F may violate the rank constraint !
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> major issue : the solution F may violate the rank constraint !
» Hack : decompose F using SVD, set o3 = 0 and recompose.
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> major issue : the solution F may violate the rank constraint !
» Hack : decompose F using SVD, set o3 = 0 and recompose.

» What about searching directly for a rank 2 solution for F?

The 7 point algorithm :

» Use 7 constraints for Af =0

» Use SVD on A in order to find the vectors f; and f, that span the null space
(the kernel) of A

» Find an element in the kernel expressed by the linear combination f = f; + af;
which also satisfies det(F) = 0
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Considerations - the 8 point algorithm

Straightforward approach :
> major issue : the solution F may violate the rank constraint !
» Hack : decompose F using SVD, set o3 = 0 and recompose.

» What about searching directly for a rank 2 solution for F?

The 7 point algorithm :

» Use 7 constraints for Af =0

» Use SVD on A in order to find the vectors f; and f, that span the null space
(the kernel) of A

» Find an element in the kernel expressed by the linear combination f = f; + af;
which also satisfies det(F) = 0

> det(F1 + aF3) is a third degree polynomial, so up to three potential solutions
may be recovered
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Considerations - the 8 point algorithm

Straightforward approach :
> major issue : the solution F may violate the rank constraint !
» Hack : decompose F using SVD, set o3 = 0 and recompose.

» What about searching directly for a rank 2 solution for F?

The 7 point algorithm :

» Use 7 constraints for Af =0

» Use SVD on A in order to find the vectors f; and f, that span the null space
(the kernel) of A

» Find an element in the kernel expressed by the linear combination f = f; + af;
which also satisfies det(F) = 0

> det(F1 + aF3) is a third degree polynomial, so up to three potential solutions
may be recovered

> This algorithm is also preferred as fewer observations are needed
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Qutline

@ The essential matrix
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Using the camera calibration and the essential matrix

If the calibration matrices K and K’ are known :
> we may recover the pose information from F = K’_TtXRK_:l :

E=t.R=KFK
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Using the camera calibration and the essential matrix

If the calibration matrices K and K’ are known :
> we may recover the pose information from F = K’_TtXRK_:l :

E=t.R=KFK

> E has five degrees of freedom (and not six) because the relative translation t
has a scale ambiguity (just as F).
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> we may recover the pose information from F = K’_TtXRK_:l :
E=t.R=KFK

> E has five degrees of freedom (and not six) because the relative translation t
has a scale ambiguity (just as F).
> Beside det(E) = 0, there is an additional constraint with respect to F, which

results from the structure of E :
Theorem : The condition which is necessary and sufficient for a matrix E to be an essential

matrix is that two of its singular values be equal, and the third one be 0.
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Using the camera calibration and the essential matrix

If the calibration matrices K and K’ are known :

> we may recover the pose information from F = K’_TtXRK_:l :
E=t.R=KFK

> E has five degrees of freedom (and not six) because the relative translation t
has a scale ambiguity (just as F).

> Beside det(E) = 0, there is an additional constraint with respect to F, which
results from the structure of E :

Theorem : The condition which is necessary and sufficient for a matrix E to be an essential
matrix is that two of its singular values be equal, and the third one be 0.

» There are thus at least five points needed for recovering directly E from an
image pair, assuming that the calibration matrices are known, and there is an
algorithm which solves this minimal problem( Nistér, David. ” An efficient solution
to the five-point relative pose problem.” |IEEE Transactions on Pattern Analysis and
Machine Intelligence (2004). )
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Using the camera calibration and the essential matrix

If the calibration matrices K and K’ are known :

>

v

E. Aldea

we may recover the pose information from F = K’_TtXRK_:l :
E=t.R=KFK

E has five degrees of freedom (and not six) because the relative translation t
has a scale ambiguity (just as F).

Beside det(E) = 0, there is an additional constraint with respect to F, which
results from the structure of E :

Theorem : The condition which is necessary and sufficient for a matrix E to be an essential
matrix is that two of its singular values be equal, and the third one be 0.

There are thus at least five points needed for recovering directly E from an
image pair, assuming that the calibration matrices are known, and there is an
algorithm which solves this minimal problem( Nistér, David. ” An efficient solution
to the five-point relative pose problem.” |IEEE Transactions on Pattern Analysis and

Machine Intelligence (2004). )
Knowing E : interesting for relative pose estimation
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Using the camera calibration and the essential matrix

If the calibration matrices K and K’ are known :

>

v

we may recover the pose information from F = K’_TtXRK_:l :
E=t.R=KFK

E has five degrees of freedom (and not six) because the relative translation t
has a scale ambiguity (just as F).

Beside det(E) = 0, there is an additional constraint with respect to F, which
results from the structure of E :

Theorem : The condition which is necessary and sufficient for a matrix E to be an essential
matrix is that two of its singular values be equal, and the third one be 0.

There are thus at least five points needed for recovering directly E from an
image pair, assuming that the calibration matrices are known, and there is an
algorithm which solves this minimal problem( Nistér, David. ” An efficient solution
to the five-point relative pose problem.” |IEEE Transactions on Pattern Analysis and
Machine Intelligence (2004). )

» Knowing E : interesting for relative pose estimation

» Main disadvantage : K and K’ are required to get to E

E. Aldea
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Recovering R and t from E

It has been shown that the decomposition of E is possible and there are actually

four valid solutions (9.6.2, Hartley and Zisserman) :

A B B\/A
(@) (W]

#

V{ 2 B A
() )

Fig. 9.12. The four possible solutions for calibrated reconstruction from E. Berween the left and
right sides there is a baseline reversal. Between the top and bottom rows camera B rotaes 180° about
the baseline. Note, only in () is the reconstrucied point in front of both cameras.

> Identify the correct solution : cheirality check (the 3D points have to be in
front of the camera) with an additional match from the two views
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Qutline

@ Rectification
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Rectification

Using F, we restrict the search for the corresponding projection x’ of a point x to a line (the
epipolar line I’ = Fx).

Stereo rectification
» Apply an adjustment to the images in order to get horizontal epipolar lines in both views
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Rectification

Using F, we restrict the search for the corresponding projection x’ of a point x to a line (the
epipolar line I’ = Fx).
Stereo rectification

» Apply an adjustment to the images in order to get horizontal epipolar lines in both views

» The search for x’ takes place simply along the same corresponding row in the second
image : interesting for dense correspondence
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Rectification

Using F, we restrict the search for the corresponding projection x’ of a point x to a line (the
epipolar line I’ = Fx).

Stereo rectification
» Apply an adjustment to the images in order to get horizontal epipolar lines in both views

» The search for x’ takes place simply along the same corresponding row in the second
image : interesting for dense correspondence

» This implies that epipoles are at horizontal infinity : e = e’ = [100]"
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Rectification

Using F, we restrict the search for the corresponding projection x’ of a point x to a line (the
epipolar line I’ = Fx).
Stereo rectification

» Apply an adjustment to the images in order to get horizontal epipolar lines in both views

» The search for x’ takes place simply along the same corresponding row in the second
image : interesting for dense correspondence

» This implies that epipoles are at horizontal infinity : e = e’ = [100]"

» Apply a virtual rotation of cameras ( Fusiello, A.; Trucco, E.; Verri, A. A compact
algorithm for rectification of stereo pairs. Mach. Vision Appl 2000 )

W

T, NAN s
AR
A== .

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap 1l : Two-view Geometry (25/25)



Rectification

Using F, we restrict the search for the corresponding projection x’ of a point x to a line (the
epipolar line I’ = Fx).
Stereo rectification

» Apply an adjustment to the images in order to get horizontal epipolar lines in both views

» The search for x’ takes place simply along the same corresponding row in the second
image : interesting for dense correspondence

» This implies that epipoles are at horizontal infinity : e = e’ = [100]"

» Apply a virtual rotation of cameras ( Fusiello, A.; Trucco, E.; Verri, A. A compact
algorithm for rectification of stereo pairs. Mach. Vision Appl 2000 )

» An interpolation is required for creating the new images, but high computation gain overall
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