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Why do we need invariant features in CV ?

Multiple views require reliable correspondences
◮ how do we usually get multiple views ?

◮ we use multiple cameras simultaneously
◮ one camera is moving while acquiring data - and the scene is static

A fundamental step for :

◮ estimating how cameras are located relatively to each other

◮ recovering scene depth

◮ estimating ego-movement (visual odometry)

◮ matching image content in general

The foundations of Computer Vision are based on these tasks, and features play
thus a significant role in this field.
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Why do we need invariant features in CV ?

Why not use contours ?

◮ the processing effort is relatively low

◮ parametric curves may be extracted relatively easy as well (Hough)

◮ various applications for specific environments :
◮ road / panel / text detection
◮ medical and satellite imagery
◮ inspection for industrial vision

Aerial imagery Lane detection Industrial vision

! Fast, specialized tasks
! Intensity variation invariantE. Aldea (CS&MM- U Pavia) COMPUTER VISION (3/47)

Simple motivator - panoramic images
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The core of the problem

◮ translation

◮ Euclidean (translation + rotation)

◮ similarity transform (tr. + rot. + scale)

◮ affine (rot. + scale + shear + translation)

◮ projective
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Why we need invariance in CV

Objective

◮ identify structures which are invariant with respect to rotation, rescaling, etc.

◮ these structures are commonly called interest points or corners

How to :
◮ identify them in a non supervised manner ?

◮ associate them robustly ?

E. Aldea (CS&MM- U Pavia) COMPUTER VISION (8/47)



Corner detectors : the basics

Definition
Corner : a location in the image which is characterized by strong intensity variation
along two different directions.

•

We will still need to compute the local image gradients

◮ but it is not enough (to do it only in the image reference system) !

•
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Corner detectors : the basics

Definition
Strategy : the content of a patch centered in the corner should vary across all
possible directions

Typical behavior :

◮ homogeneous regions : no change in patch content

◮ contours : no change along the contour

◮ corners : important change across all directions

◮ corner quality : defined by the smallest possible change

◮ proposed by Moravec in 1980
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Corner detectors : the basics

Intensity change by shift of (∆x ,∆y)

E (x , y ,∆x ,∆y) =
∑

x

∑

y

w(x , y)
︸ ︷︷ ︸

support

[
I (x , y)
︸ ︷︷ ︸

intensity

− I (x +∆x , y +∆y)
︸ ︷︷ ︸

shifted intensity

]2

Figure – Possible choices for the support function w(x , y)

E (x , y) large highlights a potential corner.

Costly if we do not use any tricks

◮ what is approximately the computational cost for an image of side N if we
implement this method naively using a patch of side K ?
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Corner detectors : the basics

First order approximation by Taylor series development

f (x +∆x , y +∆y) = f (x , y) + fx(x , y)∆x + fy (x , y)∆y

We use this approximation to rewrite the intensity variation due to shift :

∑[
I (x +∆x , y +∆y)− I (x , y)

]2
≈

∑[
I (x , y) + ∆xIx(x , y) + ∆yIy (x , y)− I (x , y)

]2

≈
∑

∆x
2
I
2
x + 2∆x∆yIx Iy +∆y

2
I
2
y

≈
∑

[∆x∆y ]

[
I 2x Ix Iy
Ix Iy I 2y

] [
∆x

∆y

]

≈ [∆x∆y ]

(
∑

[
I 2x Ix Iy
Ix Iy I 2y

])[
∆x

∆y

]

E(x , y ,∆x ,∆y) ≈ [∆x∆y ]

(
∑

g(σI ) ⋆

[
I 2x Ix Iy
Ix Iy I 2y

])[
∆x

∆y

]

≈ [∆x∆y ]

[
〈I 2x 〉 〈Ix Iy 〉
〈Ix Iy 〉 〈I 2y 〉

]

︸ ︷︷ ︸

structure tensor

[
∆x

∆y

]
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Corner detectors : the structure tensor

Properties

◮ the eigenvectors highlight the main directions of gradient variation around the
location we consider (see the ellipse of constant change)

◮ ex. : if λ2 > λ1, strong variation along v2 and smaller variation in the
direction of v1

◮ if corner, λ1, λ2 are large
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Corner detectors : the structure tensor

Decision based on the tensor eigenvalues

◮ one may compute λ1, λ2 explicitly, but too costly

◮ prefered method :

R = det(M)− αtrace2(M) = λ1λ2 − α(λ1 + λ2)
2

◮ the value of parameter α is usually 0.04 - 0.06

◮ interesting eigenvalues = local maxima of R
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Corner detectors : Harris detector

Main algorithm steps

1. compute gradients Ix = ∂

∂x
g(σD) ⋆ I , Iy = ∂

∂y
g(σD) ⋆ I

2. compute the structure tensor :

M = g(σI ) ⋆

[ ∑
I 2x

∑
Ix Iy∑

Ix Iy
∑

I 2y

]

3. compute the response function R :

R = det(M)− αtrace2(M)

4. apply thresholding to R

5. non maximal suppression on the values of R
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Corner detectors : example

Figure – Initial pair
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Corner detectors : example

Figure – response function R
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Corner detectors : example

Figure – Thresholding R
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Corner detectors : example

Figure – Non maximal suppression on R
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Corner detectors : example

Figure – Detector results
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Conclusion : Harris detector

Conclusions
! rotation invariant detector

! intensity change invariant

% not robust to scale change

% no descriptor provided for matching
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The characteristic scale

Short intro to Laplacian filtering :

Gaussian filter + Laplace (LoG) - zero crossing
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The characteristic scale

The Laplacian response - maximal if the Laplacian scale corresponds to the scale
of the variation in the image space
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The characteristic scale

If one varies σ, the Laplacien response varies as well ; the operation has to be
normalized by a multiplication by σ2
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The characteristic scale

Figure – Multi scale normalized Laplacian response
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The pyramid representation
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Approximating the Laplacian

Laplacian :
L = σ2(Gxx(x , y , σ) + Gyy (x , y , σ))

Difference of Gaussians :

DoG = G (x , y , kσ)− G (x , y , σ)
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The SIFT detector

Scale Invariant Feature Transform
◮ high performance

◮ very costly

◮ the descriptor is integrated (it is also provided by the algorithm)

1. Construction of the scale space

2. Computing the DoGs

3. Computing the characteristic scale

4. Sub-pixel localization

5. Eliminating contour responses

6. Computing the orientation

7. Computing the descriptor
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The SIFT detector

1. Construction of the scale space

2. Computing the DoGs

3. Computing the characteristic scale

4. Sub-pixel localization

5. Eliminating contour responses

6. Computing the orientation

7. Computing the descriptor
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Computing the DoGs
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The SIFT detector

1. Construction of the scale space

2. Computing the DoGs

3. Computing the characteristic scale

4. Sub-pixel localization

5. Eliminating contour responses

6. Computing the orientation

7. Computing the descriptor
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Identifying the extrema
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The SIFT detector

1. Construction of the scale space

2. Computing the DoGs

3. Computing the characteristic scale

4. Sub-pixel localization

5. Eliminating contour responses

6. Computing the orientation

7. Computing the descriptor
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Sub-pixel localization

Interpolation of discrete values of D(x , y , σ). Use of the Taylor series second order
development :

D(x) = D +
∂D

∂x

T

x+
1

2
xT

∂2D

∂x2
x

Solution :

x̂ = −
∂2D

∂x2

−1
∂D

∂x

E. Aldea (CS&MM- U Pavia) COMPUTER VISION (35/47)



The SIFT detector

1. Construction of the scale space

2. Computing the DoGs

3. Computing the characteristic scale

4. Sub-pixel localization

5. Eliminating contour responses

6. Computing the orientation

7. Computing the descriptor
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Computing the orientation

1. Compute local gradients at the characteristic scale

2. Compute local gradient histogram

3. The canonic orientation is the maximal direction

4. Each corner is characterized by : location, scale, orientation

5. Local coordinate system for building up the descriptor
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The SIFT detector

1. Construction of the scale space

2. Computing the DoGs

3. Computing the characteristic scale

4. Sub-pixel localization

5. Eliminating contour responses

6. Computing the orientation

7. Computing the descriptor
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Computing the descriptor

1. Local gradient orientations in 16 neghboring regions

2. Coordinate system defined by the corner

3. 4*4*8 orientations = 128 (descriptor dimension)
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Conclusions about SIFT

◮ Scale invariant

◮ Rotation invariant

◮ Illumination invariant

◮ Perspective invariant

◮ Costly
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The FAST detector

Features from Accelerated Segment Test

◮ extremely fast

◮ no complex operations (convolution, gradient computation etc.)

◮ not too robust

◮ no descriptor
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The FAST detector - strategy
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The FAST detector

Question 1
Sketch a naive implementation in order to test whether a pixel is a FAST corner or
not.

E. Aldea (CS&MM- U Pavia) COMPUTER VISION (43/47)



The FAST detector

Question 2
How many possible configurations are in total ?
How many coin configurations c ∈ Q are there ?
What does the following function :

H(Q) = (c + c̄) log(c + c̄)− c log c − c̄ log c̄

represent ?
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The FAST detector

Question 3
Given that the entropy gain is :

Hg = H(Q)− H(A)− H(B)

where Q = A ∪ B , think of a trick in order to improve the test that you proposed
for Question 1.
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Corner association (matching)

How to do it ?
◮ matching needs to be fast and reliable

◮ if the detector provides a descriptor (i.e. SIFT), use it for matching

◮ otherwise, a simple solution is patch matching : a patch is extracted around
the corner, and matched against a candidate in the destination image using a
correlation, SSD or SAD function

◮ other solutions exist (BRIEF, FREAK etc.)

Tricks used commonly in order to improve matching quality

◮ these tricks usually increase the computation time but remove false matches
(and also some good matches sometimes)

◮ married matching : the best candidate has to pick up the initial corner as best
candidate as well

◮ ranking : the second match must have a significantly larger distance/lower
similarity than the best match, in order to avoid confusion between similarly
looking corners
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Detectors - conclusion

Overview
◮ FAST : not so robust, no descriptor provided - but runs in 1ms on a regular

image ;

◮ Harris : slightly more robust, no descriptor provided - runs in 25-40ms on a
regular image

◮ SIFT : very robust, descriptor provided - runs in 2-5 seconds on a regular
image

◮ plenty other detectors which provide some advantage in terms of either
computational time or some invariance : SURF, AGAST, ORB, HOOFR etc.

Which detector to choose ?
◮ the choice is application dependent

◮ FAST : great for real time robotic navigation

◮ SIFT : useful when quality is important

◮ most other descriptors provide a compromise between robustness and cost
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