Artificial Intelligence

Probabilistic reasoning: representation \& inference

Marco Piastra

Probability Space

Probability: events as subsets of possible worlds

- Probability space

The intuitive definition is simple enough, its mathematical translation ... not so much

Probability: events as subsets of possible worlds

- Boolean algebra

A non-empty collection of subsets Σ of a set W such that:

1) $A, B \in \Sigma \Longrightarrow A \cup B \in \Sigma$
2) $A \in \Sigma \Longrightarrow A^{c} \in \Sigma$
3) $\varnothing \in \Sigma$

Corollary:
The sets \varnothing e W belong to any Boolean algebra generated on W Σ is also closed under binary intersection

- σ-algebra

A non-empty collection of subsets Σ of a set W such that:

1) $A_{k} \in \Sigma, \forall k \in \mathbb{N}^{+} \Longrightarrow\left(\bigcup_{k=1}^{\infty} A_{k}\right) \in \Sigma$
2) $A \in \Sigma \Longrightarrow A^{c} \in \Sigma$ This is a stronger requirement:
3) $\varnothing \in \Sigma \quad$ Hence a σ-algebra is a boolean algebra

Corollary:
but not vice-versa
The sets \varnothing and W belong to any σ - algebra generated on W
Σ is also closed under countable intersection

Probability: events as subsets of possible worlds

- σ-algebra (Event Space)

A non-empty collection of subsets Σ of a set W such that:

1) $A_{k} \in \Sigma, \forall k \in \mathbb{N}^{+} \Longrightarrow\left(\bigcup_{k=1}^{\infty} A_{k}\right) \in \Sigma$
2) $A \in \Sigma \Longrightarrow A^{c} \in \Sigma$
3) $\varnothing \in \Sigma$

- Probability measure over a σ-algebra (i.e., over the events)

A function $P: \Sigma \rightarrow[0,1]$
i.e. P assigns a measure (i.e. a real number)
to each elements of a σ-algebra Σ of subsets of W

1) $\forall A \in \Sigma, P(A) \geq 0$
2) $A_{k} \in \Sigma, \forall k \in \mathbb{N}^{+}$are disjoint $\Longrightarrow P\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} P\left(A_{k}\right)$
3) $P(\varnothing)=0$
4) $P\left(A^{c}\right)=1-P(A)$ (which implies $P(W)=1$)

Probability: events as subsets of possible worlds

- Probability space

Why bothering so much with these (very) technical definitions?

- Rationale (just a few hints)

Closure w.r.t. countable unions of a σ-algebras (as well as countable additivity of P) is required for dealing with infinite sequences of events
In such case, assuming countable union and additivity is a restriction, to ensure measurability
(see the so-called Banach-Tarski paradox for counterexamples)

Probability: events as subsets of possible worlds

- Probability measure over a σ-algebra
- Disjoint events

In general

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

If $A \cap B=\varnothing$ then events A and B are disjoint

$$
P(A \cup B)=P(A)+P(B)
$$

(*) Note that $A \cap B=\varnothing \Longrightarrow P(A \cap B)=0$
but not vice-versa: as an event can have zero probability without being empty
${ }^{(* *)}$ Unlike in propositional logic, knowing $P(A)$ and $P(B)$ is not sufficient for determining $P(A \cup B)$

Namely, probability is not compositional ...

Discrete Probability

Studying basic properties: a finitary setting

A simpler setting that allows a more intuitive definition of fundamental properties

- Finite event space
Σ is a finite collection of subsets
In this setting
boolean algebra $\equiv \sigma$-algebra
Events could also be defined via propositional logic
(à la de Finetti, 1937)
- Finitely additive probability measure

Just summations, no integrals
Computability will be always guaranteed

Partitions, random variables*

- Partition

A finite collection A_{i} of disjoint subsets (i.e. events) such that

$$
\bigcup_{i} A_{i}=W
$$

A σ-algebra can be generated from a partition
by taking its closure under union and complement

Random Variables

Partitions, random variables*

- Random Variable (i.e. a convenient way to define a σ-algebra)

Let X be a variable having a finite set of possible values $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ In each possible world, the variable X is assigned a specific value x_{i}

- The set of possible assignments $\left\{X=x_{1}, X=x_{2}, \ldots X=x_{n}\right\}$ defines a partition of W
- A σ-algebra can be obtained by taking the closure of the partition under union and complement
- $X=x_{i}$ defines an event (i.e. a subset of W)
- $X=x_{i}$ and $X=x_{j}$ are disjoint events, whenever $i \neq j$

$$
P\left(X=x_{i} \cup X=x_{j}\right)=P\left(X=x_{i}\right)+P\left(X=x_{j}\right)
$$

Random variables having binary values are also said to be binomial (also Bernoullian)
Random variables with multiple values are also said to be multinomial

Random variables, joint distribution*

Multiple random variables

In practice, in a probabilistic representation, there will be multiple random variables

Example:

X_{i} occurrence of a word i in the body of an email (binomial)
Y classification of that email as spam (binomial)
The intersection of two or more σ-algebras is a σ-algebra
Together, a collection of random variables defines a partition of W

- Joint Probability Distribution

for a given set of random variables, e.g. X, Y, Z
It is a function that associates a value in $[0,1]$ to each individual combination of values

$$
P(X=x, Y=y, Z=z)
$$

Given that X, Y e Z define each a partition of W :

$$
\sum_{x} \sum_{y} \sum_{z} P(X=x, Y=y, Z=z)=1
$$

Random variables: notation

- Random variables, events and σ-algebras

Sometimes the notation can be ambiguous
Examples:

$$
P(X)
$$

This is the probability measure over the σ-algebra generated by the random variable X

$$
P(X=x)
$$

This the probability (i.e. a value in $[0,1]$) associated to the event $X=x$

$$
P(X, Y=y)
$$

This is the probability measure over the σ-algebra generated by the random variable X in the subspace of W corresponding to the event $Y=y$

Fundamental Operations

Marginalization

Removing a random variable from a joint distribution
Given a joint probability distribution

$$
P(X=x, Y=y)
$$

The marginal probability $P(X=x)$ is obtained via summation:

$$
P(X=x)=\sum_{y} P(X=x, Y=y)
$$

A marginal probability can be a joint probability too ...
Marginal probability of an event (shorthand notation, values of Y omitted):

$$
P(X=x)=\sum_{Y} P(X=x, Y)
$$

Marginal probability of a σ-algebra (shorthand notation, values of Y omitted):

$$
P(X)=\sum_{Y} P(X, Y)
$$

Conditional probability

- Definition

$$
P(X \mid Y=y):=\frac{P(X, Y=y)}{P(Y=y)}
$$

It is a form of inference: from a set W to a set W^{\prime}
i.e., from a probability space to another probability space

Example: W is the set of possible worlds, X, Y are binary random variables and $P(X, Y)$ is the joint probability distribution
Suppose the agent learns that event $Y=1$ has occurred:
the event $Y=0$ is then impossible (to him/her)
$W^{\prime}:=\{w \in W \mid Y=1\}$ is the new set of possible worlds
$P(X \mid Y=1)$ is the new probability of X
More in general

$$
P(X \mid Y):=\frac{P(X, Y)}{P(Y)}
$$

Denotes the conditional probabilities for the whole σ-algebra of events generated by Y (i.e. a family of probability measures)

Bayes' Theorem (T. Bayes, 1764)

- Definition

A relation between conditional and marginal probabilities

$$
P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
$$

$$
P(Y \mid X) \text { is also called likelihood } L(X \mid Y)
$$

The theorem follows from the definition of conditional probability (chain rule)

$$
P(X, Y)=P(X \mid Y) P(Y)=P(Y \mid X) P(X)
$$

Furthermore, given the definition of marginalization:

$$
P(Y)=\sum_{X} P(X, Y)=\sum_{X} P(Y \mid X) P(X)
$$

Also called
'law of total probability'
it follows an alternative formulation of the Bayes' theorem:

$$
P(X \mid Y)=\frac{P(Y \mid X) P(X)}{\sum_{X} P(Y \mid X) P(X)}
$$

Example: information and bets

- Two envelopes, only one is extracted

One envelope contains two red tokens and two black tokens, it is worth \$1.00
One envelope contains one red token and two black tokens, it is valueless
The envelope has been extracted.
Before posing you bet, you are allowed to extract on token from it
a) The token is black. How much do you bet ?
b) The token is red. How much do you bet ?

Purpose: showing that Bayes' Theorem makes the representation easier

Independence

Independence, conditional independence

- Independence (also marginal independence)

Two events are independent
iff their joint probability is equal to the product of the marginals

$$
\begin{aligned}
\langle X \perp Y\rangle & \Rightarrow & P(X, Y)=P(X) P(Y) \\
& \Rightarrow & P(X \mid Y)=\frac{P(X, Y)}{P(Y)}=\frac{P(X) P(Y)}{P(Y)}=P(X)
\end{aligned}
$$

- Conditional independence

Two events are conditional independent, given a third event, iff their joint conditional probability is equal to the product of the conditional marginals

$$
\begin{array}{rll}
\langle X \perp Y| Z> & \Rightarrow & P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z) \\
& \Rightarrow & P(X \mid Y, Z)=\frac{P(X, Y \mid Z)}{P(Y \mid Z)}=\frac{P(X \mid Z) P(Y \mid Z)}{P(Y \mid Z)}=P(X \mid Z)
\end{array}
$$

CAUTION: the two forms of independence are distinct!

$$
\langle X \perp Y\rangle \nRightarrow\langle X \perp Y \mid Z\rangle,\langle X \perp Y \mid Z\rangle \nRightarrow\langle X \perp Y\rangle
$$

Independence, conditional independence

 represents a possible outcome. The events R, B and Y are represented by the areas shaded red, blue and yellow respectively. And the probabilities of these events are shaded areas with respect to the total area. In both examples R and B are conditionally independent given Y because
$\operatorname{Pr}(R \cap B \mid Y)=\operatorname{Pr}(R \mid Y) \operatorname{Pr}(B \mid Y)^{[1]}$
but not conditionally independent given not Y because:
$\operatorname{Pr}(R \cap B \mid \operatorname{not} Y) \neq \operatorname{Pr}(R \mid \operatorname{not} Y) \operatorname{Pr}(B \mid$ not $Y)$
[from Wikipedia, "Conditional Independence"] R, B and Y here are subsets, i.e. events, not random variables

The example above shows that (marginal or conditional) independence of two specific events does NOT imply (marginal or conditional) independence of the whole σ-algebras

Inference
 (without learning)

Probabilistic Inference (no learning)

- General structure of probabilistic inference problems

The starting point is a fully-specified joint probability distribution

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

In an inference problem, the set of random variables

$$
\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}
$$

is divided into three categories:

1) Observed variables $\left\{X_{o}\right\}$, i.e. having a definite (and certain) value
2) Irrelevant variables $\left\{X_{i}\right\}$, i.e. which are not directly part of the answer
3) Relevant variables $\left\{X_{r}\right\}$, i.e. which are part of the answer we seek

In general, the problem is finding:

$$
P\left(\left\{X_{r}\right\} \mid\left\{X_{o}\right\}\right)=\sum_{\left\{X_{i}\right\}} P\left(\left\{X_{r}\right\},\left\{X_{i}\right\} \mid\left\{X_{o}\right\}\right)
$$

- "Decidability" (actually "computability") is not an issue (*in a finitary setting)

Given that the joint probability distribution is completely specified

- Computational efficiency can be a problem

The number of value combinations grows exponentially with the number of random variables

A few more concepts

Continuous random variables (hints)

Although intuitively similar, dealing with continuous random variables is technically difficult
Consider a continuous random variable $X \in \mathcal{X}$A continuous domain
$X=x$ does not describe a proper event e.g. the real interval $[0,1]$

For technical reasons (i.e. measurability), a point must have probability zero
Events need to be subsets, or better, intervals:

$$
X \leq a, X \leq b, \quad a<X \leq b \quad \text { Assuming } a<b
$$

Probability measures these subsets

$$
\begin{aligned}
& P(X \leq b)=P(X \leq a)+P(a<X \leq b) \\
& P(a<X \leq b)=P(X \leq b)-P(X \leq a)
\end{aligned}
$$

Density and Cumulative Distribution

- Probability Density Function (pdf)

Assume that the derivative $p(X):=\frac{d P(X)}{d X}$ exists everywhere It is due to be non-negative

$$
p(X=x) \geq 0 \quad \text { usually writter as } p(x) \geq 0
$$

- Probability Measure as Cumulative Distribution Function (CDF)
cumulative distribution function (cdf)

$$
P(a<X \leq b):=\int_{a}^{b} p(x) d x
$$

As a probability measure, it must integrate to unity

$$
P(W)=\int_{x \in \mathcal{X}} p(x) d x=1
$$

Note that $p(x)$ may well be above 1 (it is its integral that equals unity)

Expected value of a random variable

(also expectation)

Basic definition

$$
\mathbb{E}_{X}[X]:=\sum_{x \in \mathcal{X}} x P(X=x)
$$

More concise notation

$$
\mathbb{E}[X]:=\sum_{x \in \mathcal{X}} x P(x)
$$

Continuous case

$$
\mathbb{E}[X]:=\int_{x \in \mathcal{X}} x p(x) d x
$$

Expectation is a linear operator

$$
\begin{aligned}
& \mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] \\
& \mathbb{E}[c X]=c \mathbb{E}[X]
\end{aligned}
$$

Conditional expectation

$$
\mathbb{E}_{X}[X \mid Y=y]=\mathbb{E}[X \mid Y=y]:=\sum_{x \in \mathcal{X}} x P(X=x \mid Y=y)
$$

Variance of a random variable

Basic definition

$$
\operatorname{Var}(X):=\mathbb{E}_{X}\left[\left(X-\mathbb{E}_{X}[X]\right)^{2}\right]=\mathbb{E}_{X}\left[\left(X-\mu_{X}\right)^{2}\right]
$$

where

$$
\mu_{X}:=\mathbb{E}_{X}[X]
$$

$$
\operatorname{Var}(X):=\sum_{x \in \mathcal{X}} P(X=x)(x-\mu)^{2}
$$

variance is not a linear operator
Conditional variance

$$
\operatorname{Var}(X \mid Y=y):=\mathbb{E}_{X}\left[\left(X-\mathbb{E}_{X}[X \mid Y=y]\right)^{2} \mid Y=y\right]
$$

Variance lemma

$$
\begin{aligned}
& \operatorname{Var}(X)=\mathbb{E}\left[\left(X-\mu_{X}\right)^{2}\right]=\mathbb{E}\left[X^{2}\right]-2 \mu_{X} \mathbb{E}[X]+\mu_{X}^{2} \\
& =\mathbb{E}\left[X^{2}\right]-2 \mu_{X}^{2}+\mu_{X}^{2}=\mathbb{E}\left[X^{2}\right]-\mu_{X}^{2} \\
& \mathbb{E}\left[X^{2}\right]=\mu_{X}^{2}+\sigma_{X}^{2} \\
& \text { where } \\
& \sigma_{X}:=\sqrt{\operatorname{Var}(X)}
\end{aligned}
$$

