

Symbolic representation and inference: the intuitive idea

Marco Piastra

Solving quadratic equations

$$x^{2} + ax + b = 0$$

$$x^{2} + 2(a/2)x + a^{2}/4 - a^{2}/4 + b = 0$$

$$(x + a/2)^{2} - a^{2}/4 + b = 0$$

$$(x + a/2)^{2} = a^{2}/4 - b$$

$$x = -a/2 \pm (a^{2}/4 - b)^{1/2}$$

A sequence of steps: at each step a transformation rule is applied

Solving quadratic equations

$$\begin{aligned} x^2 + ax + b &= 0 \\ x^2 + 2(a/2)x + a^2/4 - a^2/4 + b &= 0 \\ (x + a/2)^2 - a^2/4 + b &= 0 \\ (x + a/2)^2 &= a^2/4 - b \\ x &= -a/2 \pm (a^2/4 - b)^{1/2} \end{aligned}$$

A sequence of steps: at each step a transformation rule is applied

From start to end

Start point: a premise (i.e. we assume the truth of something)

End point: a conclusion (*i.e. we state that something else must <u>also</u> be true*)

(both points are decided by us)

Solving quadratic equations

$$x^{2} + ax + b = 0$$

$$x^{2} + 2(a/2)x + a^{2}/4 - a^{2}/4 + b = 0$$

$$(x + a/2)^{2} - a^{2}/4 + b = 0$$

$$(x + a/2)^{2} = a^{2}/4 - b$$

$$x = -a/2 \pm (a^{2}/4 - b)^{1/2}$$

A sequence of steps: at each step a transformation rule is applied

From start to end

Start point: a premise (i.e. we assume the truth of something)

End point: a conclusion (*i.e. we state that something else must <u>also</u> be true*)

(both points are decided by us)

Solving quadratic equations

$$x^{2} + ax + b = 0$$

$$x^{2} + 2(a/2)x + a^{2}/4 - a^{2}/4 + b = 0$$

$$(x + a/2)^{2} - a^{2}/4 + b = 0$$

$$(x + a/2)^{2} = a^{2}/4 - b$$

$$x = -a/2 \pm (a^{2}/4 - b)^{1/2}$$

A sequence of steps: at each step a transformation rule is applied

From start to end

Start point: a premise (i.e. we assume the truth of something)

End point: a conclusion (*i.e. we state that something else must <u>also</u> be true*)

(both points are decided by us)

Sequence of steps

Each transformation rule is based on a *semantic equivalence*

Each step must be *correct*, in the above sense

Symbolic Reasoning

Symbolic descriptions can *abstract*

 Symbolic descriptions have *abstraction* capabilities: for instance, many linguistic phenomena are *systemic* (i.e. their structural complexity goes beyond a *pattern-matching*)

Someone may understand English or not.

But no human being can understand the sentence:

"Sally likes Harry"

without being able to understand:

"Harry likes Sally"

or any other sentences of the kind:

"X likes Y"

where X and Y can be any nouns or definite descriptions:

"Ronald's girlfriend **likes** the cat that Linda brought home yesterday"

(freely adapted from [Fodor e Phylyshyn, 1988])

Many (intuitively) valid arguments obey an abstract schemaAll (humans) are (mortals)All (Greeks) are (humans)All (Greeks) are (mortals)Abstract schema:All H are MAll G are HAll G are M

Many (intuitively) valid arguments obey an abstract schema All (*humans*) are (*mortals*) hence

All (humans) are (mortals) All (Greeks) are (humans) All (Greeks) are (mortals)

Abstract schema:

All *H* are *M* All *G* are *H*

All **G** are **M**

CAUTION!

hence

The position of the line IS relevant: in this case the schema does <u>not</u> work

Many (intuitively) valid arguments obe	ey an abstract schema
All (humans) are (mortals)	
All (Greeks) are (mortals)	hence
All (Greeks) are (humans)	
Abstract schema:	
All <i>H</i> are <i>M</i>	
All G are M	hence
All G are H	

CAUTION!

The ordering of sentences IS relevant: in this case the schema does <u>not</u> work

Many (intuitively) valid arguments obey an abstract schema All (humans) are (mortals) All (Greeks) are (humans) hence All (Greeks) are (mortals) Abstract schema: All H are M All G are H hence All G are M

The validity of schemas does not depend on *meaning*:

All (enchanted frogs) are (princes)All (princes) are (young and beautiful)All (enchanted frogs) are (young and beautiful)

Same schema, different impression

Fallacies (*paralogisms*)

Wrong sequence:

All (humans) are (mortals) All (Greeks) are (mortals) All (Greeks) are (humans)

The last two sentences have been switched

Referential ambiguities:

(Nothing) is better than (eternal happiness) (One ham sandwich) is better than (nothing) (One ham sandwich) is better than (eternal happiness)

'Obscure' subtleties (obscure for now):

All (enchanted frogs) are (princes) All (enchanted frogs) are (young and beautiful) There is an (enchanted frog) which is (a young and beautiful princes)

What do we mean by "all"? Do we need at least one specimen to say "all"? In such case, the schema would be valid (*in formal logic it is not, as we will see*)

What is the purpose of *symbolic* logic?

To distinguish correct reasoning from incorrect reasoning

To distinguish correct reasoning from incorrect reasoning by the **formal, symbolic** structure alone

Truth and Possible Worlds: the quest for formal semantics

What is *true*?

• A world of cats

likes	Tom	Spot	Kitty	Felix
Tom	Х			
Spot	х		x	
Kitty		x	x	
Felix			x	

Sentences about this world

"Spot likes Tom" and "Tom does not like Spot" "Tom likes himself" "Kitty likes Spot" and "Spot likes Kitty" "Kitty likes herself" "Felix likes Kitty"

All these sentences are **true**, in the world above

What is *true*?

• A world of cats

likes	Tom	Spot	Kitty	Felix
Tom	Х			
Spot	Х		х	
Kitty		x	x	
Felix			Х	

Sentences about this world

"Spot likes Felix" "Spot likes himself" "Kitty does not like herself" "Felix likes Spot"

All these sentences are **false**, in the world above

What is *true*?

• A world of *cats*

likes	Tom	Spot	Kitty	Felix
Tom	Х			
Spot	х		х	
Kitty		x	x	
Felix			х	

Sentences about this world (i.e. with generalization)

"Every cat likes a cat" *is true* "Every cat likes another cat" *is false* "Tom does not like any other cat" *is true* "Kitty is liked by every cat" *is false*

"Every cat that likes another cat also likes her/himself" is?

How to make a sentence *true*?

Consider the sentence

"Kitty likes Spot" and "Spot likes Tom"

It can be made true in many different ways "It may be true in many different *possible worlds*" Examples (i.e. of other *possible worlds* of cats):

likes	Tom	Spot	Kitty	Felix
Tom				
Spot	Х			
Kitty		x		
Felix				

likes	Tom	Spot	Kitty	Felix
Tom	х			
Spot	х		Х	
Kitty		x	х	
Felix			Х	

likes	Tom	Spot	Kitty	Felix
Tom	Х	x	x	Х
Spot	х	x	x	х
Kitty	х	x	x	х
Felix	Х	Х	Х	Х

How to make a sentence *true*?

Consider the sentence

"Kitty likes Spot" and "Kitty does not like Spot"

There is no way to make it true

"There is no possible world where this can be true"

Three sentences

- 1) "Every cat that likes Kitty likes Spot as well"
- 2) "Tom likes Kitty"
- 3) "Tom likes Spot"

There is no way to make true sentences 1) and 2) without making sentence 3) true as well...

(just give it a try...)

likes	Tom	Spot	Kitty	Felix	lik
Tom					Тс
Spot	х				Sp
Kitty		х			Ki
Felix		х	х		Fe

likes	Tom	Spot	Kitty	Felix	I
Tom					
Spot	х	х	х		• •
Kitty		х	х		
Felix		х	х		

likes	Tom	Spot	Kitty	Felix
Tom	x			
Spot			х	
Kitty		x		
Felix				x

likes	Tom	Spot	Kitty	Felix
Tom				
Spot	х	х	х	x
Kitty			х	
Felix		х	х	

likes	Tom	Spot	Kitty	Felix
Tom				
Spot				
Kitty			х	
Felix				

likes	Tom	Spot	Kitty	Felix
Tom	х	х	х	
Spot	х			
Kitty		х		
Felix		х	х	

likes	Tom	Spot	Kitty	Felix
Tom		х	х	
Spot	х	х	х	
Kitty	х	х		
Felix				

likes	Tom	Spot	Kitty	Felix	
Tom	х		х		
Spot	х				
Kitty		х			
Felix		х		х	

likes	Tom	Spot	Kitty	Felix
Tom	х	х	х	x
Spot		х		
Kitty			х	
Felix				x

likes	Tom	Spot	Kitty	Felix
Tom			х	
Spot	х			
Kitty		х		
Felix		х	х	

This is just a small subset of **all** possible worlds ...

Three sentences

- 1) "Every cat that likes Kitty likes Spot as well"
- 2) "Tom likes Kitty"
- 3) "Tom likes Spot"

There is no way to make true sentences 1) and 2) without making sentence 3) true as well...

elix

(just give it a try...)

likes	Tom	Spot	Kitty	Felix		likes	Tom	Spot	Kitty
Tom						Tom			
Spot	х					Spot	x	x	x
Kitty		x				Kitty		x	x
Felix		x	х			Felix		x	х
					•				
likes	Tom	Spot	Kitty	Felix		likes	Tom	Spot	Kitty
<i>likes</i> Tom	Tom ×	Spot ×	Kitty ×	Felix		<i>likes</i> Tom	Tom	Spot ×	Kitty ×
				Felix			Tom x		
Tom	x			Felix		Tom		х	x
Tom Spot	x	x		Felix		Tom Spot	x	x x	x

Sentence 1) is true in these worlds

likes	Tom	Spot	Kitty	Felix
Tom	х			
Spot			х	
Kitty		х		
Felix				x

Spot

x x Felix

х

likes	Tom	Spot	Kitty	Felix
Tom				
Spot	х	х	х	х
Kitty			х	
Felix		х	х	

likes	Tom	Spot	Kitty	Felix
Tom				
Spot				
Kitty			х	
Felix				

Tom	Spot	Kitty	Felix	likes	Tom
	x	х		Tom	х
<	x	х		Spot	х
<	x			Kitty	
				Felix	
	-				

likes	Tom	Spot	Kitty	Felix
Tom	х	x	х	x
Spot		x		
Kitty			х	
Felix				x

likes	Tom	Spot	Kitty	Felix
Tom			х	
Spot	х			
Kitty		х		
Felix		х	х	

Three sentences

- 1) "Every cat that likes Kitty likes Spot as well"
- 2) "Tom likes Kitty"
- 3) "Tom likes Spot"

There is no way to make true sentences 1) and 2) without making sentence 3) true as well...

(just give it a try...)

likes	Tom	Spot	Kitty	Felix	likes	Tom	Spot	Kitty	Felix		likes	Tom	Spot	Kitty	Felix	likes	Tom	Spot	Kitty	Felix	likes	Tom	Spot	Kitty	Felix
Tom					Tom						Tom	х				Tom					Tom				
Spot	х				Spot	х	x	х			Spot			х		Spot	х	х	х	х	Spot				
Kitty		x			Kitty		x	х			Kitty		х			Kitty			х		Kitty			х	
					 Felix		x	х		L	Felix				x	Felix		х	х		Felix				
Felix		X	Х		I CIIX		~	~		L															
Felix		x	X		T CHX			~		L															
Felix <i>likes</i>	Tom		× Kitty	Felix	likes	Tom		Kitty	Felix		likes	Tom	Spot	Kitty	Felix	likes	Tom	Spot	Kitty	Felix	likes	Tom	Spot	Kitty	Felix
	Tom ×	× Spot ×		Felix		Tom	Spot x		Felix			Tom ×	Spot	Kitty ×	Felix	<i>likes</i> Tom	Tom ×	Spot x	Kitty ×	Felix ×		Tom	Spot	Kitty ×	Felix
likes		Spot	Kitty	Felix	likes	Tom x	Spot	Kitty	Felix		likes		Spot		Felix						likes	Tom	Spot		Felix
<i>likes</i> Tom	х	Spot	Kitty	Felix	<i>likes</i> Tom		Spot ×	Kitty ×	Felix		<i>likes</i> Tom	x	Spot ×		Felix	Tom		х			<i>likes</i> Tom		Spot x		Felix

Sentence 1) is true in these worlds

Three sentences

- 1) "Every cat that likes Kitty likes Spot as well"
- 2) "Tom likes Kitty"
- 3) "Tom likes Spot"

There is no way to make true sentences 1) and 2) without making sentence 3) true as well...

(just give it a try)

likes	Tom	Spot	Kitty	Felix	likes	Tom	Spot	Kitty	Felix	likes	Tom	Spot	Kitty	Felix	likes	Tom	Spot	Kitty	Felix		likes	Tom	Spot	Kitty	Felix
Tom					Tom					Tom	х				Tom						Tom				
Spot	x				Spot	х	x	x		Spot			х		Spot	х	x	х	х		Spot				
Kitty		x			Kitty		x	x		Kitty		x			Kitty			х			Kitty			х	
		x	х		Felix		x	x		Felix				x	Felix		x	х			Felix				
Felix										r										-					
Felix		_ ^																							
Felix <i>likes</i>	Tom	< Spot	Kitty	Felix	likes	Tom	Spot	Kitty	Felix	likes	Tom	Spot	Kitty	Felix	likes	Tom	Spot	Kitty	Felix	h	likes	Tom	Spot	Kitty	Felix
	Tom x			Felix		Tom	Spot x	Kitty ×	Felix	<i>likes</i> Tom	Tom x	Spot ×	Kitty ×	Felix	<i>likes</i> Tom	Tom ×	Spot ×	Kitty ×	Felix ×		<i>likes</i> Tom	Tom	Spot	Kitty ×	Felix
likes		Spot	Kitty	Felix	likes	Tom ×			Felix					Felix					elix			Tom x	Spot		Felix
<i>likes</i> Tom	x	Spot	Kitty	Felix	<i>likes</i> Tom		x	x	Felix	Tom	x			Felix	Tom		x		elix		Tom		Spot x		Felix

Sentence 1) is **true** in these worlds

Artificial Intelligence 2022-2023

Symbolic Reasoning [24]

Three sentences

- 1) "Every cat that likes Kitty likes Spot as well"
- 2) "Tom likes Kitty"
- 3) "Tom likes Spot"

There is no way to make true sentences 1) and 2) without making sentence 3) true as well...

(just give it a try)

Questions: Was this just coincidence? How many possible worlds must we consider in order to be sure?

Three sentences

- 1) "Every cat that likes Kitty likes Spot as well"
- 2) "Tom likes Kitty"
- 3) "Tom likes Spot"

There is no way to make true sentences 1) and 2) without making sentence 3) true as well...

(just give it a try)

Questions: Was this just coincidence? How many possible worlds must we consider in order to be sure?

Hint: All of them.