Artificial Intelligence

Reinforcement Learning

Marco Piastra

Artificial Intelligence 2021-2022 Reinforcement Learning [1]

Multi-Armed Bandit

Artificial Intelligence 2021-2022 Reinforcement Learning [2]

Multi-Armed Bandit

A row of N old-style slot machines : “_'- S el
L] BaSiC deﬁnitions / [image from wikipedia]

N arms or bandits

Each arm a yields a random reward r with probability distribution P(r | @)
For simplicity, only Bernoullian rewards (i.e. either O or 1) will be considered here

Each timetin a sequence, the player (i.e. the agent) selects the arm 7(t)
In other words, 7T is the policy adopted by the agent
* Problem

Find a policy & that maximizes the total reward over time
The policy will include random choices i.e. it will be stochastic

Artificial Intelligence 2021-2022 Reinforcement Learning (3]

Multi-Armed Bandit: strategies

* Informed (i.e. optimal) strateqgy

At all times, select the bandit with higher probability of reward:
7*(t) = argmax,P(r =1|a)

Clearly, this strategy is optimal but requires knowing all distributions P(r | a)
With enough data (e.g. from other players), these distributions can be learnt

= Random strategy

At all times, select a bandit a at random, with uniform probability

How does the Random strategy compare with the optimal, informed strategy?

Artificial Intelligence 2021-2022 Reinforcement Learning [4]

Multi-Armed Bandit: basic definitions

= Actions, Rewards
a € A inthiscase ae{la-"aN}
r € R inthiscase r € {0,1}

= Probability distribution (unknown)
P(R|A) the probability of reward R for action A (i.e. two random variables)
= Policy
7 :NT — A ateach time, defines which action will be taken, it may be stochastic

= Q-value
The expected reward of action a

Qa) =E[R|A=a] =Y, rP(r| A= a)

» Optimal Value
Maximum expected reward

V®i=Q(a”) = maxQ(a)

Artificial Intelligence 2021-2022 Reinforcement Learning [5]

Multi-Armed Bandit: evaluating strategies

» Total Expected Regret
How far from optimality a policy is, considering the total reward over T trials
For just one sequence of T trials, the Total Regret with expected rewards is

action taken at step t

L e
L(T):=TV* =) Q(x(t))
t=1
In a more general definition, the Total Expected Regret is

N N
L(T) =TV" = Y B[T(T)]Q(a) = Y BIT.(T)]A,

number of times action a is taken in T trials (i.e. a random variable)
where

A, =V*—=Q(a)

Artificial Intelligence 2021-2022 Reinforcement Learning [6]

Multi-Armed Bandit: evaluating strategies

» Total Expected Regret

N N
L(T) :==TV* - ZE[Ti(T)]Q(a) = E[T.(T)]A,

number of times action a is taken in T trials (i.e. a random variable)

A, :=V*—=Qa)
With the optimal policy z* the total expected regretis 0.

Whereas, with the random policy the total expected regret grows linearly over time:

N

— T

L(T) = N E A, ...since, with a random strategy [T, (T')] = —
a=1

Artificial Intelligence 2021-2022 Reinforcement Learning [7]

Multi-Armed Bandit: Online learning

Adaptive policy: exploration vs. exploitation
exploration: make trials over the set of Varms to improve on estimates Q(a)
exploitation: make use of the current best estimates Q(a)

= Greedy policy

Initialize all the estimates ()(a) atrandom
Repeat:

1) select the bandit with the current best estimated reward a = argmax,Q(a)
2) update the current estimate about a as

T

~

Ly __— reward of arm a at trial t
Z Ta
=1

Q(a) = —T —— — Total number of times the arm a has been played
a

Artificial Intelligence 2021-2022 Reinforcement Learning [8]

Multi-Armed Bandit: Online learning

Adaptive policy: exploration vs. exploitation
exploration: make trials over the set of N arms to improve on estimates Q(a,)
exploitation: make use of the current best estimates Q(a)

= g-greedy policy (0<e<1)
Initialize all the estimates Q(a) at random
Repeat:

1) with probability (1 — ¢) select the bandit a = argmax_ Q(a)
else (i.e. with probability €) select one bandit at random

2) update the current estimate about a

I __— reward of arm a at trial t
> Ta,t
_t=1

A

Q(G) = T/ total number of times the arm a has been played
a

Artificial Intelligence 2021-2022 Reinforcement Learning [9]

Multi-Armed Bandit: Online learning

Adaptive policy: exploration vs. exploitation
exploration: make trials over the set of N arms to improve on estimates Q(a)
exploitation: make use of the current best estimates Q(a)

» Experimental comparison of different strategies (Total Expected Regret)

After a certain period of time,
the greedy strategy stops exploring
and exploits its estimates

whereas, the e-greedy strategy
keeps exploring and improving

7/
random .
7

8 9 10

Time-steps

Einitial

t

Decaying e-greedy strategy: & =

Artificial Intelligence 2021-2022 Reinforcement Learning [10]

Multi-Armed Bandit: evaluating strategies

= The two greedy strategies

They are biased: they depend on the initial random estimates
Optimistic variant: initially, set all Q(a) :=1

The average total regret grows linearly, in the long run
In fact:
= on the average, the greedy strategy will get stuck in a suboptimal choice
= the e-greedy strategy will continue to choose an arm at random (with probability ¢)

Can we do any better?

The decaying e-greedy strategy does that...
Is there a minimum, i.e. a lower bound?

Artificial Intelligence 2021-2022 Reinforcement Learning [11]

Multi-Armed Bandit: Optimal online learning

= | ower bound theorem [Lai & Robbins 1985]

Consider a generic, adaptive (i.e. learning) strategy for the multi-armed bandit
problem with Bernoulli reward (i.e. » € {0,1})

_ A
li L(T InT a
Am UT) 2 o =, Q) V) A= V- Qo)
h
WhEre Q(a) (1- Q(a))

kl(Q(a), V") = Q(a)In == + (1 — Q(a)) In

\ the Kullback-Leibler divergence

1-v)

In other words, we can achieve logarithmic growth for the total expected regret, but not better:
on average, any adaptive strategy will choose suboptimal bandits a minimum number of times

. InT
e (U IO D

Artificial Intelligence 2021-2022 Reinforcement Learning [12]

Multi-Armed Bandit: UCB strateqgy

- Upper confidence bound (UCB) strategy [Auer, Cesa-Bianchi and Fisher 2002]

Initialize all the estimates of the expected reward Q(a) := 0
Play each arm once (to avoid zeroes in the formula below)

total number of trials

Repeat: > 1 = number of times
n th k has b laved
1) select the bandit a = argmax, (+ 4/ e arm k has been playe

2.5

Numerical example of the

2) update the current estimate confidence bound term
as the average reward

Theorem
. _ SInT PR "0 Fags s rars s P S
With the UCB strategy, lim E[T,(T)] < + e :
T—o0 - Ag \ .
1 i.e.a (small) constant
where it can be shown that — >
Az — kl(Q(a), V*)

(i.e. there is a reasonably small gap between the two bounds — near optimality)

Artificial Intelligence 2021-2022 Reinforcement Learning [13]

Multi-Armed Bandit: Thompson Sampling

* Thompson Sampling strateqy (also ‘Bayesian Bandit’) [Thompson, 1933]

Initialize all the expected reward Q(a) :~ Beta(z;1,1)

i.e. assume this as a random variable
Repeat: with this distribution

~

1) sample each of the N distributions to obtain an estimate ((a)
2) select the bandit @ = argmax,,Q(a)

3) update the posterior distribution
Q(a) :~ Beta(z; Rq + 1, T, — Rq+1)

total number of times the arm has been played

total (Bernoulli) reward from this arm (i.e. number of wins)

Theorem [Kaufmann et al., 2012]

The Thompson Sampling strategy has essentially the same theoretical bounds
of the UCB strategy

Artificial Intelligence 2021-2022 Reinforcement Learning [14]

Multi-Armed Bandit: Thompson Sampling

* Thompson Sampling strateqy (also ‘Bayesian Bandit’) [Thompson, 1933]
Example run with 3 arms: trace of the posterior probabilities for each Q(a)

Posteriors After 2 pulls

Posteriors After 1 pull

| R —— I R R
W%M 08 10 %o 02 04 06 08 10
ground truth: Q(a) i Pnster!iors AfterES pulls _ ! !

2% 02 04 06 08 10 %o 02 04 06 08 10
Posteriors After 25 pulls Posteriors After 50 pulls

%o 02 04 06 08 10 90 02 04 06 08 T
Posteriors After 100 pulls Posteriors After 200 pulls

%0 02 04 06 08 10 90 02 04 06 08 10
Posteriors After 400 pulls Posteriors After 1000 pulls

[image from: http://camdp.com/blogs/multi-armed-bandits]

Artificial Intelligence 2021-2022 Reinforcement Learning [15]

Multi-Armed Bandit: Thompson Sampling

* Thompson Sampling strateqy (also ‘Bayesian Bandit’) [Thompson, 1933]

In practical experiments, this strategy shows better performances in the long run
[Chapelle & Li, 2011]

5 Expected Total Regret of Mutlit-armed Bandit strategies

= upper_credible choice
= payesian_bandit_choice :
40~ == uch bayes S—

after » pulls
=

Exepected Total Regret

i i i i
] 2000 4000 G000 8000 10000
Number of pulls

Actually, Thompson Sampling is a preferred strategy at Google Inc.
(see https.//support.google.com/analytics/answer/28468827hl=en)

[image from: http://camdp.com/blogs/multi-armed-bandits]

Artificial Intelligence 2021-2022 Reinforcement Learning [16]

Markov Decision Process (MDP)

Artificial Intelligence 2021-2022 Reinforcement Learning [17]

Basic gssumptions

[image from: https://arxiv.org/pdf/1811.12560.pdf]

Agent

 EEm—

(¢ St+1 Tt

\

Environment

St —» St+1

The Environment:isin state sy tme
An Agent observes state s: and performs action ay
The Environment state transitions from s — S¢41

The Agent receives reward 7+

Artificial Intelligence 2021-2022 Reinforcement Learning [18]

Basic gssumptions

[image from: https://arxiv.org/pdf/1811.12560.pdf]

Agent

 EEm—

(¢ St+1 Tt

\

Environment

St —» St+1

The Environment: is in state s;—— ™

An Agent observes state s: and performs action ay
The Environment state transitions from s — S¢41
The Agent receives reward 7+

Cumulative reward: p ._ i r,

t=0
Artificial Intelligence 2021-2022 Reinforcement Learning [19]

An example: grigworld

1 2 3 4
1
The state of the agent is the position on the grid:
. e.g. (1 ,1)’ (3’4)’ (2’3)
At each time step, the agent can move one box
in the directions «T{— with probability 0.8

/ the agent will end up here

The effect of each move is somewhat stochastic, however:
for example, a move T has a slight probability of producing
a different (and perhaps unwanted) effect

| N
Entering each state yields the reward shown in each box above T butwith probability 0.2
it might end up here

There are two absorbing states: entering either the green or the red box
means exiting the gridworld and completing the game

» What is the best (i.e. maximally rewarding) movement policy?

Artificial Intelligence 2021-2022 Reinforcement Learning [20]

Markov Decision Process (MDP)

1 2 3 4
1 Formalization and abstraction
of the gridworld example
.

Markov Decision Process: < S, A,r, P,y >
A setof states: S = {s1,82,...}

A setof actions: A = {ay,as,...}

A reward function: r:S — R

A transition probability distribution : P(Si1+1 | St, A:) (also called a model)
Markov property: the transition probability depends only on the previous state and action

P(St—l—l | StJAt) — P(SH—l | StaAta St—laAt—la St—2aAt—23 ..)
A discount factor: 0 <~y <1

Artificial Intelligence 2021-2022 Reinforcement Learning [21]

Markov Decision Process (MDP): policies and values

The agent is supposed to adopt a deterministic policy: ©:S — A
In other words, the agent always chooses its action depending on the state alone

Given a policy 7 , the state value function is defined, for each state s as:
VW(S) = E[T(St) —+ ’}/T(St_|_1) + ’72?“(51;4_2) —+ ... | T, St = S]

Note the role of the discount factor: avalue v < 1 means that that future rewards
could be weighted less (by the agent) than immediate ones

Note also that all states S; must be described by random variables :
i.e. the policy is deterministic but the state transition is not

Note also that when the reward is bounded, i.e. 7(S) < rpax

Z’Y T(St < TmaxZ’Y = Tmax %
=0 -

for v < 1 thisis the geometric series

Artificial Intelligence 2021-2022 Reinforcement Learning [22]

Markov Decision Process (MDP): policies and values

The agent is supposed to adopt a deterministic policy: ©:S — A
In other words, the agent always chooses its action depending on the state alone

Given a policy 7 , the state value function is defined, for each state s as:
VW(S) = E[T(St) —+ ’}/T(St_|_1) + ’72?“(51;4_2) —+ ... | T, St = S]

Note the role of the discount factor: avalue v < 1 means that that future rewards
could be weighted less (by the agent) than immediate ones

Note also that all states S; must be described by random variables :
i.e. the policy is deterministic but the state transition is not

In the gridworld example:
= The set of states is finite
= The set of actions is finite

= Forevery policy, each entire story is finite
Sooner or later the agent will fall into one of the absorbing states

Artificial Intelligence 2021-2022 Reinforcement Learning [23]

Bellman equations

By working on the definition of value function:
V™(s) == E[r(S;) +vr(Sit1) +¥?1r(Siq2) +...| 7, S; = s
E[r(St) +v(r(Se41) +7(Seq2) +...)[7,5 = 8]
(s) +VE[r(Si1) +97(Seq2) + ... | 7,5 = 4]
(s) +v 22y P(s" | 5,7(s)) - E[r(Ses1) + 97 (Siq2) + ... | ™, 841 = §]
() + 72 s, P(Sev1 | s,m(s)) - VT (St41)

r

|
!-i

r

This means that in a Markov Decision Process:

V7(s) =7(s) +72s,,, P(St1|s,7m(s)) - VT (Se41)

This is true for any state, so there is one such equation for each of those

If the set of states is finite, there are exactly | S| (linear) Bellman equations for |S| variables:
in general, for any deterministic policy, V™ can be computed analytically

Artificial Intelligence 2021-2022 Reinforcement Learning [24]

Optimal policy — Optimal value function

= Basic definitions
V*(s) :=maxV7(s), Vs € S

7

7*(s) := argmax_V7"(s), Vs € S

Property: for every MDP, there exists such an optimal deterministic policy (possibly non-unique)

With Bellman Equations:
max, V7™ (s) = r(s) + v max, (Zstﬂ P(Sty1 | s,7(s)) - Vﬂ(5t+1))

V*(s) =r(s) +ymax, (Zstﬂ P(Siy1 | s,m(s)) - V*(St+1))
= 1(s) +ymaxe (g, P(Si1|5,0) - V*(Siy))

7*(s) = argmax,, (ZSt+1 P(Sii1 | s,a)V™ (St+1))

Computing V™ directly from these equations is unfeasible, however
There are in fact | A] |51 possible strategies

Therefore:

However, once V'* has been determined, m* can be determined as well

Artificial Intelligence 2021-2022 Reinforcement Learning [25]

Reinforcement Learning
(model-based)

Artificial Intelligence 2021-2022 Reinforcement Learning [26]

Optimal value function: value iteration

= Value iteration algorithm

Initialize: V(S) = ?"(S), Vse S Note that there is no policy:
Repeat: all actions must be explored

1) Forevery state, update: V(s) := r(s) —I—’ymaxZP(s' | s,a)V(s")
a

Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in S,
this algorithm converges to V*

Artificial Intelligence 2021-2022 Reinforcement Learning [27]

Value iteration and optimal policy

l ’ z Ml

Initialize states
(e.g. using rewards as initial values)

Define the optimal policy as:

*(8) = argmaxa(zs P(St_|_]_ | s,a) :

V*(St+1))

Artificial Intelligence 2021-2022

Reinforcement Learning [28]

Optimal policy: policy iteration

= Policy iteration algorithm

Initialize (3) ,Vs € S atrandom This step is computationally expensive:
Repeat:

1) Foreach state, compute: V(s) := V7™ (s)
2) Foreach state, define: 7(s) := argmax, Z P(s' | s,a)V(s")

S

— (with fixed policy)

either solve the equations or use value iteration

Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in .5,

this algorithm converges to 7"

As with the value iteration algorithm, this algorithm uses partial estimates
to compute new estimates.
Itis also greedy, in the sense that it exploits its current estimate V'™ (s)

Policy iteration converges with very few number of iterations,
but every iteration takes much longer time than that of value iteration

The tradeoff with value iteration is the action space:
when action space is large and state space is small, policy iteration could be better

Artificial Intelligence 2021-2022

Reinforcement Learning [29]

Reinforcement Learning
(model-free)

Artificial Intelligence 2021-2022 Reinforcement Learning [30]

Offline vs. Online learning

» Value iteration and policy iteration are offline algorithms
The model, i.e. the Markov Decision Process is known
What needs to be learn is the optimal policy 7*

In the algorithms, visiting states just means considering: there is no agent
actually playing the game.

= Different conditions: learning by doing ...
Suppose the model (i.e. the MDP) is NOT known, or perhaps known only in part
Then the agent must learn by doing...

Artificial Intelligence 2021-2022 Reinforcement Learning [31]

Action value function

An analogous of the value function V'™

Given a policy 7, the action value function is defined, for each pair (s,a) as:
Q7 (s,a) =3 g, P(Ses1]s,a) VT (St41)
=25, P(St+1]5,a) - E[r(Se41) + 7 (Seq2) + ... | T, Seia]
=2.5,,, P(Sev1 [s,a) - [r(Seq1) + E[yr(Seq2) + ... | 7, Sea]]
=25,,., P(St+1]s,a) - [r(Se41) + vQ" (St41, T(St41))]

In other words, Q™ (s, a) is the expected value of the reward in S; 11
by taking action a in state s and then following policy st from that point on

Following a similar line of reasoning, the optimal action value function is

Q* (37 a,) = ZSt-{-l P(St—l—l | S, O‘,) . [T(St—l—l) + ymaXg/ Q*(St+17a’)]

Artificial Intelligence 2021-2022 Reinforcement Learning [32]

Q-Learning

= Q-learning algorithm (e-greedy version)

Initialize Q(s, a) atrandom, put the agent is in a random state s
Repeat:

1) Select the action argmax,Q(s,a) with probability (1 — &)
otherwise, select a at random

2) Theagentis now in state s’ and has received the reward r
3) Update Q(s,a) by

AQ(s,a) = alr + ymaxy Q(s',a’) — Q(s,a)]

~————_ Exponential Moving Average
(see later ...)

Note that step 1) is closely similar to a multi-armed bandit:
in each state, the agent has to choose one among all actions in A
and this will produce a random reward. ..

Artificial Intelligence 2021-2022 Reinforcement Learning [33]

Q-Learning

» Q-learning algorithm

Theorem (Watkins, 1989): in the limit of that each action is played infinitely often
and each state is visited infinitely often and « — 0 as experience progresses, then

Q(s,a) = Q*(s,a)

with probability 1

The Q-learning algorithm bypasses the MDP entirely,
in the sense that the optimal strategy is learnt without learning the model P(Sy11 | St, Ay)

Artificial Intelligence 2021-2022 Reinforcement Learning [34]

An aside: moving gverages

Following non-stationary phenomena
= Average -
o _ 1
Definition: 7, := -];1 Uk

Running implementation:
1 — 1
U = T('UT + kgl ”Uk) = T(’UT + (T — 1)’UT_1)

1 1 1

=vr_1+ —(UT — @T—l) = — v + (1 — _)5T—1

T T

= Simple Moving Average (SMA)
T

_ 1
Vrm == Y
n

k=T—n

T
T

= Exponential Moving Average (EMA)

Ura:=avr+ (1 —a)Up_1.4, o €]0,1]

“the weight of newer observations remains constant”

Global Temperatures

—— Annual Average
— Five Year Average

-0.2

Temperature Anomaly (°C)

0.4t

1880 1900 1920 1940 1960 1980 2000
[image from wikipedia]

“the weight of newer observations diminishes with time”

Artificial Intelligence 2021-2022

Reinforcement Learning [35]

An aside: moving gverages
» Exponential Moving Average (EMA)

Uro :=avp+ (1 —a)Up_14, @ €]0,1]

Expanding:
UVt =t + (1 —)T 1 0

b

(1—)

“the weight
of older observations
diminishes with time”

=av;+ (1 — a)goé ve—1 + (1 — Of)ﬁt—la)

=oav + (1 —a)

avi—1 + (1 —a)(avi—o+ (1 — a)Vi—3.4))

=a(v+(1—-a)v_1+(1—a) v)+ (1—a)’Ti_34

[image from wikipedia]

The weight of past contributions decays as

(1— oz)A*

A SMA with n previous values
is approximately equal to an EMA with

2
n—+1

o =

S&P 500 Total Return Index (Monthly)
a

1,600

1,000

g

8

=y
]

200

Computerized Investing

AN

;a
i

i

7

+
4 :
-r‘- +
H + Raw Data
t.
+ ——Average
+

;S

——SMA 6m

—EMA 0.01

ey

——EMAD0.28

pals

S T T Ve &

Q
VAP - AN ' N > R s A P S~ S - S\ S | S - B - A .
oM <~ N =)) oy
G N N AN S I S SN (- S P M R

S > & &

Artificial Intelligence 2021-2022

Reinforcement Learning [36]

Q-Learning revisited

= Q-learning algorithm (e-greedy version)

Initialize Q(s, a) atrandom, put the agent is in a random state s
Repeat:

~

1) Select the action a = argmax,Q(s, a) with probability (1 — ¢)
otherwise, select a at random

2) Theagentis now in state s’ and has received the reward r
3) Update Q(s,a) by
AQ(s,a) = alr + ymaxy Q(s',a’) — Q(s,a)]
By rewriting step 3)
Q(s,a) = Q(s,a) + AQ(s,a) = Q(s,a) + afr + ymaxy Q(s',d') = Q(s, a)]

A A

= afr + ymax, Q(s',a")] + (1 — a)Q(s, a)

Exponential Moving Average

compare with (see before):

Q*(s,a) = ZSt—l—l P(Siy1|s,a) - [r(Sip1) +ymaxy Q*(Siy1,a’)]

Expectation

Artificial Intelligence 2021-2022 Reinforcement Learning [37]

SARSA

= SARSA algorithm (e-greedy version)

Initialize Q(s, a) atrandom, put the agent is in a random state s
Repeat:

~

1) Select the action a = argmax,Q(s, a) with probability (1 — ¢)
otherwise, select a at random

2) Theagentis now in state s’ and has received the reward r

A

3) Select the action @’ = argmax, Q(s’, a) with probability (1 — ¢)
otherwise, select a’ at random

4) Update Q(s,a) by

AQ(s.0) = alr +10(s',a') — (s, a)
I No more 'max’ here

Q-learning is a an off-policy algorithm: each update involves max Q(s',a")
(i.e. exploration is not taken into account) @

SARSA is a an on-policy algorithm: each update involves Q(S’, a’)
(which involves the next policy action, exploration included)

Artificial Intelligence 2021-2022 Reinforcement Learning [38]

SARSA vs Q-Learning

= Cliff World

'S"is the start
'G'is the goal
Each white box has r = —1

'The Cliff' region has r = —100
and entails going back to 'S’

= Experimental Results

SARSA finds a sub-optimal but safer path
since its learning takes into account
the € risk of going off the cliff

Q-learning finds the optimal path
but, occasionally, it falls off the cliff
during learning due to the &-greedy strategy

r=-1 > safe path
optimal path
Sarsa
25
Reward -50-
per Q-learning
epsiode
7'5
—100 - I I | I 1
0 100 200 300 400 500
Episodes

Artificial Intelligence 2021-2022

Reinforcement Learning [39]

Reinforcement Learning Methods

[image from: https://arxiv.org/pdf/1811.12560.pdf]

Experience

Model

Acti
learning CHS

Model-free
[Model} RL Value/ policy}

Planning

Artificial Intelligence 2021-2022 Reinforcement Learning [40]

