Artificial Intelligence

Horn Clauses
and SLD Resolution

Marco Piastra

Artificial Intelligence 2021-2022 SLD Resolution [1]

Back to Propositional Logic

Artificial Intelligence 2021-2022 SLD Resolution [2]

Horn Clauses (in L,)

= Definition

A Horn Clause is a wff in CF
that contains at most one literal in positive form

* Three types of Horn Clauses:
Rule: two or more literals, one positive
Examples: {B, =D, —=A, =C}, {A, =B} (equivalentto: (D AAAC)—>B, B—>A)
Facts: just one positive literal
Examples: {B}, {A}

Goal: one or more literals, all negative
Examples: {—B}, {—A, =B}

More terminology:
Rules and facts are also called definite clauses
Goals are allo called negative clauses

Artificial Intelligence 2021-2022

SLD Resolution [3]

Lost in Translation...

Many wffs can be translated into Horn clauses:

(AANB)>C
~(AAB)VC
—-AvV -BvVC
A—>(BAC
—~AV (B A C)
(-A V B) A (—A v C)
(=A V B), (~A Vv C)
(AvB)>C
~(AVB)VC
(A A —-B) Vv C
(FAVC)A(—B V)
(=A Vv C), (—B Vv C)
But not all of them:
(AN —-B)>C
~(AA -B) VvV C
-AVBVC

A— (B vV C
—AVBVC

(rewriting —)
(De Morgan - CF —itis a rule)

(rewriting —)
(distributing V)
(CF - two rules)

rewriting —)
De Morgan)
distributing V)
CF - two rules)

(
(
(
(

(rewriting —)
(De Morgan)

(rewriting —)

Artificial Intelligence 2021-2022

SLD Resolution [4]

SLD Resolution

Linear resolution with Selection function for Definite clauses

= Algorithm
Starts from a set of definite clauses (also the program) + a goal
1) At each step, the selection function identifies a literal in the goal (i.e. subgoal)
2) All definite clause applicable to the subgoal are selected, in the given order
3) The resolution rule is applied generating the resolvent
Termination: either the empty clause { } is obtained or step 2) fails.

Example: {—A}
Selection function: leftmost subgoal first R {A, -B, -C}
Definite clauses: {C}, {D}, {B, =D}, {A, —B, —=C} {-B, —=C}
Goal: {—A} ~_{B,-D}
{—=D, =C}
~{b}
{-C}
. {©
{}

Artificial Intelligence 2021-2022 SLD Resolution [5]

SLD trees

SLD derivations {—A}

Example: {C}, {D}, {B, =D}, {A, =B, =C} goal {—A} é’ {-B, =C}
In this example each subgoal can be resolved in one mode only 5 |
This is not true in general § {—D, -C}
R Y
|
{}
= SLD trees (= trace of all SLD derivations from a goal)
Example: {C}, {D}, {B, —F}, {B, —E}, {B, =D}, {A, =B, =C} goal {—A}
A few new rules have been added: there are now different possibilities
{—-A} Selection function:
| leftmost subgoal first
{—-B, =C}
|
{—-F, -C} {—-E, -C} {-D, =C}
| | |
X X {—-C}
|
{}

Each branch correspond to a possible resolution for a subgoal

Artificial Intelligence 2021-2022 SLD Resolution [6]

SLD Resolution

= Aresolution method for Horn clauses in Ly

It always terminates
Itiscorrect: T ¢ = I'Eop
ItiscompleteeT'Ep = 'l

= Computationally efficient

It has polynomial time complexity (w.r.t the # of propositional symbols occurring in T and ¢)

Artificial Intelligence 2021-2022 SLD Resolution [7]

SLD resolution
in First-Order Logic

Artificial Intelligence 2021-2022 SLD Resolution [8]

Horn Clauses in L,

The definition is very similar to the propositional case

* Horn Clauses (of the skolemization of a set sentences)
Each clause contains at most one literal in positive form

Facts, rules and goals

Fact: a clause with just an individual atom
{Greek(socrates)}, {Pyramid(x)}, {Sister(sally, motherOf(paul))}
Rule: a clause with at least two literals, exactly one in positive form

{Human(x), —=Greek(x)},

Vx (Greek(x) — Human(x))

{—Female(x), —=Parent(k(x),x), —=Parent(k(y),y), Sister(x,y)}
VxVy ((Female(x) A 3Jz (Parent(z,x) A Parent(z,y))) — Sister(x,y))

{—Above(x,y), On(xk(x))}, {=Above(x,y), On(j(y).y)}
VxVy (Above(x,y) — (dz On(x,z) A v On(v,y)))

Goal: a clause containing negative literals only
{—Mortal(socrates)}

{—Sister(sally,x), —Sister(x,paul)}
Negation of 3x (Sister(sally,x) A Sister(x,paul))

Artificial Intelligence 2021-2022

SLD Resolution [9]

SLD Resolution in Lgg
* |[nput: a program IT and a goal ¢

Program I (i.e. a set of definite clauses: rules + facts) in some predefined linear order:
VY1i:Y21 1 ¥n (each vy, is a definite clause)
Goal ¢ (i.e. a conjunction of facts in negated form), which becomes the current goal v

Note: the selection function for the current goal and subgoal
will be discussed in the next slide

Procedure:
1) Select a negative literal —« (ie.the subgoal) in the current goal vy
) Scan the program (in the predefined order) to identify a clause candidate literal y,
3) Try unifying —a and std(y,) (i.e. apply the standardization of variables to &’)
)

If there is a unifier o of =« and std(y)), replace the current goal with the resolvent
of Std(yi) [0] and y[o] (ie.first apply o to both std(y;) and 3 and then generate the resolvent)

N

5) Then, if the resolvent is the empty clause, terminate with success,
otherwise select a new current goal and resume from step 1)

6) Else, if the unification fails, scan the program and select a new candidate literal y,
and resume from step 3)

7) Else, if there are no further clauses in the program, select a new current goal and
resume from step 1)

8) If all the goals in the tree have been fully explored, terminate with failure
Artificial Intelligence 2021-2022 SLD Resolution [10]

SLD Resolution in Lgg

= Two alternative selection functions:

Depth-first (which is the most common...)

= Always select the most recent goal, i.e. the resolvent which has been generated last, as
the current goal ¢

= Then, in the current goal ¢, select the leftmost subgoal —a not selected yet

= When the current goal ¢ is fully explored and no new resolvent has been generated,
select the next most recent goal in the tree (backtracking)

Breadth-first
= Always select the least recent goal as the current goal ¢
= Then, in the current goal ¢, select the leftmost subgoal —a not selected yet
= When the current goal ¢ is fully explored select the next least recent goal in the tree

Comparison

Breadth-first is a fair selection function, in the sense that every possible resolution will be eventually
attempted (i.e. ‘it leaves nothing behind’).

Depth-first tends to save memory and be more efficient, but it is NOT fair (more to follow)

Artificial Intelligence 2021-2022 SLD Resolution [11]

SLD Trees

= Example (depth-first selection function):

IT = {{Human(x), =Greek(x)}, {Mortal(y), =Human(y)},
{Greek(socrates)}, {Greek(plato)}, {Greek(aristotle)}}

goal = {—Mortal(x)}
“Is there anyone who is mortal?”

1 {ﬂMolrtaI(x)} [
{—Mortal(x)}, {Mortal(y,), ~Human(y,),} ||
I
2: {_'Humaln(Y1)} [X/y]
{—Human(y,)}, {Human?xl), —Greek(x,)} /v,]

— {—Greek(xy)} [x/y1ly./x]
{—Greek(x,)} {Greek(socrates)} [x/v,][y,/x]

4: {3 Xy Qly./x1[x,/socrates]

Artificial Intelligence 2021-2022 SLD Resolution [12]

SLD Trees

. Example (depth-first selection function, forcing full exploration of SLD tree):

IT = {{Human(x), =Greek(x)}, {Mortal(y), =Human(y)},
{Greek(socrates)}, {Greek(plato)}, {Greek(aristotle)}}

goal = {—Mortal(x)}
“Is there anyone who is mortal?”

1 {ﬂMolrtaI(x)} [
{—Mortal(x)}, {Mortal(y,), ~Human(y,),} ||
I
2: {_'Humaln(Y1)} [X/y]
{—Human(y,)}, {Human?xl), —Greek(x,)} /v,]

3: {~Greek(x,)} [X/y Iy /x]

S
{—Greek(x;)} {Greek(socrates)} [x/y,|[y,/x,]
{—Greek(x,)} {Greek(plato)} [x/y,|[y./x.] \

{—Greek(x)} {G reek(aristotle?} [XIy,] [y/%4]
4: {3} Xy Iy /x1[x,/socrates] 5: {F Xty 1y /X 1[x,/plato] 6: {} Xy 1ly./X.1[x,/aristotle]

Artificial Intelligence 2021-2022 SLD Resolution [13]

SLD Trees

= Another example (depth-first selection function):

IT = {{Mortal(felix), —Cat(felix)}, {Human(x), —=Greek(x)}, {Mortal(y), =Human(y)},
{Greek(socrates)}, {Greek(plato)}, {Greek(aristotle)}}
goal = {—Mortal(x)}
“Is there anyone who is mortal?”

1 {ﬂMoTtaI(x)} [
{—Mortal(x)}, {Mortall(felix), —Cat(felix)} [| {—Mortal(x)}, {Mortal(y,), ~Human(y,),} [|
|

2: =Cat(felix) [x/felix] 3 {~ Humarll(yl)} [X/y,]
| {—Human(y,)}, {Human?xl), —Greek(x,)} [X/v,]

goal 2: cannot be resolved
4: {~Greek(xy)} [X/y,][y:/x,]
I

{—Greek(x,)} {Greek(socrates)} [x/v,|[y./x]

{3} Xy dly./x.1[x,/socrates]

Artificial Intelligence 2021-2022 SLD Resolution [14]

*The discreet charme of functions

» Representing data structures: lists of items [a, b, C, ...]
Symbolsin 2

cons/2
it’s a function that associates items (e.g. @) to a list (e.g. [b, c])
cons(a, cons(b, cons(c, nil))) represents the list [a, b, C]

Append/3
it’s a predicate: each pair of lists X and y is associated to their concatenation z

nil
it’s a constant, represents the empty list.

Axioms (AL)

Vx Append(nil, x, X)
Vx Vy Vz (Append(x, y, z) — Vs Append(cons(s, X), Y, cons(s, 2)))

Examples of entailment
{AL + 3z Append(cons(a, nil), cons(b, cons(c, nil), z) }
= Append(cons(a, nil), cons(b, cons(c, nil)), cons(a, cons(b, cons(c, nil))))
{AL + 3x Iy Append(x, y, cons(a, cons(b, nil)))}

= Append(cons(a, nil), cons(b, nil), cons(a, cons(b, nil)))
= Append(nil, cons(a, cons(b, nil)), cons(a, cons(b, nil)))
= Append(cons(a, cons(b, nil)),nil, cons(a, cons(b, nil)))
Artificial Intelligence 2021-2022 SLD Resolution [15]

The world of lists

= Lists ofitems[a, b, C, ...]

cons/2
it’s a function that associates items (e.g. a) to a list (e.g. [b, c])
cons(a,cons(b,cons(c,nil))) is the list [a, b,]

Append/3
it’s a predicate: each pair of lists X and y is associated to their concatenation z

nil
it’s a constant, the empty list.

Shorthand notation (Prolog): [] < nil
[a] < cons(a,nil)
[a,b] < cons(a,cons(b,nil))
[a][b,c]] < cons(a,[b,c])

Axioms (AL)

Vx Append(nil,x,x)
VxVyVz (Append(x,y,z) — Vs Append([s,x].y.[s,z])

Artificial Intelligence 2021-2022 SLD Resolution [16]

The world of lists

Problem: ¥x Append(nil, x, x) | 3y ¥x Append(nil, cons(y, X), cons(a, X))

1: ¥x Append(nil, x, x), =3y Vx Append(nil, cons(y, x), cons(a, X)) (refutation)
2: Vx Append(nil, x, x), Yy Ix —Append(nil, cons(y, x), cons(a, X)) (prenex normal form)
3: {Append(nil, x,)}, {—=Append(nil, cons(y, k(y)), cons(a, k(y)))}

(k/1 is a Skolem function, clausal form)
(N.B. there is no skolemization in Prolog : the programmer does it)

The pair of literals
Append(nil, x, x), —=Append(nil, cons(y, k(y)), cons(a, k(y))))
... contains the same predicate Append/3 but the arguments are different

There is however an MGU o = [x/cons(a, k(a)), y/a] that yields
{Append(nil, cons(a,k(a)), cons(a,k(a)))}, {—Append(nil, cons(a, k(a)), cons(a, k(a)))}
From this, the resolvent is the empty clause.

Artificial Intelligence 2021-2022 SLD Resolution [17]

The world of lists in Prolog

% Identical to built-in predicate append/3, although it uses "cons"

% as a defined predicate, thus allowing trace-ability.

append (cons (S ,X) ,Y,cons(S,2)) :- append(X,Y,Z).
append (nil, X, X) .

% WARNING: express your queries with cons. Examples:
% ?- append(cons(a,nil), cons(b,cons(c, nil)) ,cons(a,cons(b,cons(c, nil)))).

% ?- append(X,Y,cons(a,cons(b,cons(c, nil)))).

Artificial Intelligence 2021-2022 SLD Resolution [18]

Infinite SLD Trees (2irness of SLD)

* An example:

I = {{S(a,b)}, {S(b.c)}, {S(x,2), =S(x.y), =S(y,2)}}
—¢ ={~S@x}

goal: —iS(a,x) 1
{=S(ax)}, |{S(a'b)} []
{} [x/b]

Easy...

Artificial Intelligence 2021-2022 SLD Resolution [19]

Infinite SLD Trees (Airness of SLD)

* An example:

I = {{S(a,b)}, {S(b.c)}, {S(x,2), =S(x.y), =S(y,2)}}
—¢ ={~S@x}

goal: —iS(a,x) 1 —_—
{—=S(@ax)}, l{S(a’b)} 0 {=S@x)} {S(x3,25), =S(X3,Y3), —S(¥3:23)} [1
|
1 /0] {=3(ays), ~S(ys,z3)} [xs/a, X/z3]

I
{—~S(a.ys), —S(Ya,Z5)}, {S(a,b)} [X/z3, X4/a, y4/b]
I
{—S(b,z5)} [x/z3, x4/2]
I
{—S(b,z3)}, {S(b,c)} [X/z5, x4/a]

{} [¥/z,, >|<3/a, z,/c] (= [x/c])

Forcing to backtrack...
(easy again)

Artificial Intelligence 2021-2022 SLD Resolution [20]

Infinite SLD Trees (Airness of SLD)

= An example:

IT = {{S(a,h)}, {S(b,c)}, {S(x.,2), =S(x.y), =S(y,2)}}
—|¢ = {_'S(a,X)}
goal: =S(a,x) []

S
[...]1 {=S@x)} {S(x3.23), ﬂl|5(x3,y3), ~S(y3:23)} [
{—S(a,y3), =S(y3,25)} [X5/a, x/z5]
{~S(@ys), ﬁS(ys,Zg)}l, 15(@h)} [x/z;, x/a]
{—-S(b,ze,)}I [X/z5, X5/a]
{—S(b,z5)}, {S(L,c)} [X/z5, X5/a] {—=S(b,z5)}, {S(X4,24), = S(X4,Ya), = S(YasZ4)} [X/25, X5/a]

| |
{3} [¥/z5, X412, 25/c] (= [x/c]) {=5(0.y4), 7S(Yas2a)} [X/23, Xq/a, Z5/24, X4/0]
|
{=S(b,ys), =S(yaza)} {S(Xs,25), =S(X5,Ys), ~S(¥sZs)} [X/z3, Xs/a, 25124, X,/D]
. |
ZZ’}IC’QZ% l;g:;)thrGCkm {=3(0ys), ~S(ys,25), ~S(z5.24)} |[X/ Z3, X3la, Z3/24, X,Ib, Y4l25, X5/b]
(]

Artificial Intelligence 2021-2022 SLD Resolution [21]

Infinite SLD Trees (Airness of SLD)

* A second example:
IT = {{S(x,2), =S(x,y), =S(y,2)},{S(a,b)}, {S(b,c)}}

_'¢ = {—-S(a,x)} i Notice the change in clause ordering.....
goal: —iS(a,x) [

{S(@0} £800.2), ~S0u), =502} [
{-S@yy), =12} [x,/a, X/z,]
(~S(@y2), ~S(y220} {5002, =Sy, =S} [, 2]
{~5(2,.2,), ~S(%Yy), ﬂS(y%,zz)} /2, X/z,, %,la, Y,/2,]
[...]

The infinite loop occurs immediately ...

Artificial Intelligence 2021-2022 SLD Resolution [22]

Infinite SLD Trees (2irness of SLD)

= A second example:
IT = {{S(x,2), =S(x,y), =S(y,2)}.{S(a,b)}, {S(b,c)}}

_'¢ = {—-S(a,x)} i Notice the change in clause ordering.....
goal: —iS(a,x) [

{—~S(ax)}, {S(x1,2y), ﬁls(xl,yl), —3(y1z)} [{—S(a,x)}, l{S(a,b)} I
{=S(@yy), ~S(yn.z1)} [x/a, x/z,] {3 [x/b]
{=S@y1), =S(y1,21)} {S(%2:2,), l_‘S(Xz’Y2)’ —S(Y222)} [Xi/a, XIzi] {=S(a,x)}, {S(Xaizs), =S(XaYa), —S(Ya1Za)} []
{—S(2,,2,), =S(X,,¥,), —-S(yl,zz)} [Xi/a, x/z,, X4, y,/Z,] {—S(@,y,), ﬂS(yL,z:,J)} [Xs/a, x/z5]
o (~S(ay5). =S5z h {S@b)} [z 1]
{—-S(b,z3)}I [X/z5, X5/a]
|
The infinite loop occurs immediately ... {73k {S(tl)’C)} e fA

Backtracking never occurs in this case (due to the infinite Ioopf,} Xz, x3/a, Z/c] (= [x/c])
yet, if it occurred it would have produced the two correct results

Artificial Intelligence 2021-2022 SLD Resolution [23]

Infinite SLD Trees (Airness of SLD)

* Inboth previous examples the infinite loop (i.e. divergence) is unavoidable
* Yetin thefirst one, the method first produces the right results and then diverges

* Sointhefirst case the result is complete (i.e. all entailed formulae are derived)
while in the second case the method is not

A fair selection function is such that no possible resolution will be postponed
indefinitely: that is, any possible resolution will be performed, eventually.

In the two previous examples, we used a depth-first exploration method of the SLD tree:
which is not complete (in the above sense)

A breadth-first exploration method is fair hence it is complete (in the above sense)

In actual programming systems (e.g. Prolog) the depth-first is preferred for memory efficiency
since the breadth-first method forces to keep (most of) the whole SLD tree in memory

Artificial Intelligence 2021-2022 SLD Resolution [24]

