Artificial Intelligence

Entailment and Algorithms

Marco Piastra

Entailment as satisfiability

Transforming problems: entailment as satisfiability

- Step 1: the problem " $\Gamma \vDash \varphi$? "

can be transformed into a satisfiability problem

In fact, $\Gamma \models \varphi$ iff $\Gamma \cup\{\neg \varphi\}$ is not satisfiable

Transforming problems: entailment as satisfiability

- Step 1: the problem " $\Gamma \vDash \varphi$?" can be transformed into a satisfiability problem
In fact, $\Gamma \vDash \varphi$ iff $\Gamma \cup\{\neg \varphi\}$ is not satisfiable

$$
\begin{array}{ll}
(w(\Gamma) \text { is the set of possible worlds that satisfy } \Gamma) \\
\Gamma \models \varphi \Rightarrow w(\Gamma) \subseteq w(\{\varphi\}) & \text { (1 } \subseteq\{\mathbf{0}, \boldsymbol{2}\} \\
& w(\{\neg \varphi\})=\mathbf{0} \\
w(\Gamma \cup\{\neg \varphi\})=w(\Gamma) \cap w(\{\neg \varphi\}) & \\
w(\Gamma \cup\{\neg \varphi\})=\varnothing & \text { (1) } \cap \mathbf{0}=\varnothing
\end{array}
$$

- Step 2: the problem "is $\Gamma \cup\{\neg \varphi\}$ satisfiable?" can be transformed into a wff satisfiability problem (a.k.a. 'SAT problem')

Taking this one step further, we can transform $\Gamma \cup\{\neg \varphi\}$ into just one formula:

$$
\wedge_{(\Gamma \cup\{\neg \varphi\})}
$$

[^0]
Computational Complexity Theory (in a quick ride)

Turing Machine (A. Turing. 1987)

- A more precise definition

A non-empty and finite set of states S
At each instant the machine is in a state $s \in S$

A non-empty and finite alphabet of symbols Q
The alphabet Q includes a blank, default symbol b
Each cell in the tape contains a symbol $q \in Q$

A partial transition function (i.e., the 'program')

$\tau: S \times Q$	$S \times Q \times\{$ Left, None, Right $\}$
currentstate/ / input symbol	\backslash loutput symbol head move

It is partial in the sense it needs not be defined on any input tuple
A subset of terminal states $T \subseteq S$
An initial state $s_{0} \in S$

Turing Machine (A. Turing. 1987)

- A busy beaver example (3 states)

$$
\begin{aligned}
S & =\{A, B, C, \text { HALT }\} \\
s_{0} & =A \quad T=\{\text { HALT }\} \\
Q & =\{0,1\} \quad b=0 \\
\tau & = \\
& <A, 0>\rightarrow<B, 1, \text { Right }> \\
& <A, 1>\rightarrow<C, 1, \text {, Left }> \\
& <B, 0>\rightarrow<A, 1, \text { Left }> \\
& <B, 1>\rightarrow<B, 1, \text { Right }> \\
& <C, 0>\rightarrow<B, 1, \text { Left }> \\
& <C, 1>\rightarrow<\text { HALT, } 1, \text { Right }>
\end{aligned}
$$

Assume that the tape is infinite and plenty of blank symbols 0
What does this machine do?

Decisions and decidability (automation)

- What is a problem?

A problem is an association, i.e. a relation between inputs and outputs, a.k.a. solutions

$$
K=I \times S
$$

- Search problem

Typically, K associates one input to many solutions Optimization problems
A search problem plus an objective or cost function

$$
c: S \rightarrow \mathbb{R} \quad \text { (i.e. from } S \text { to the set of real numbers) }
$$

In general, the task in a search problem is finding the solution(s) having maximal or minimal cost

- Decision problem

The solution space S is $\{0,1\}$
and K associates each input to a unique solution: $K: I \rightarrow\{0,1\}$
Remarkable example of decision problem: $\Gamma \models \varphi$?
The input space I contains all possible combinations of set Γ of wffs with individual wffs φ
The solution is uniquely defined for any instance of such problems in I

Decisions and decidability (automation)

- Decidable problem

A decision problem K for which there exists an algorithm, i.e a Turing machine,
(there are other ways of defining an algorithm or an effective procedure: they are all equivalent)
that always terminates and produces the right answer in finite time.

Example of an undecidable problem: The Halting Problem

Given the formal description of a particular Turing machine and a specific input, is it possible to tell if whether it will either halt eventually or run forever?

In other words, does it exist a Turing machine that, given in input the description of another
Turing machine, will always produce the answer desired?
The answer is no (such a Turing machine cannot exist)

An aside: The Halting Problem

- Intuitive ideas behind the proof (i.e. of the undecidability of this problem)

Let's assume there exists a Turing machine H that, given the description of a Turing machine M with input I always terminates producing an output "halt" or "loop" depending on whether M with input I will terminate or not

An aside: The Halting Problem

- Intuitive ideas behind the proof (i.e. of the undecidability of this problem)

Let's assume there exists a Turing machine H that, given the description of a Turing machine M with input I always terminates producing an output "halt" or "loop" depending on whether M with input I will terminate or not

Assume H existed

We could build another Turing machine K that enters an infinite loop whenever the output of H is "halt" and that terminates, with output "halt", when H outputs "loop"

An aside: The Halting Problem

- Intuitive ideas behind the proof (i.e. of the undecidability of this problem)

Let's assume there exists a Turing machine H that, given the description of a Turing machine M with input I always terminates producing an output "halt" or "loop" depending on whether M with input I will terminate or not

Assume H existed
We could build another Turing machine K that enters an infinite loop whenever the output of H is "halt" and that terminates, with output "halt", when H outputs "loop"

What will be the output of K when given K itself as the input?
K should diverge when K terminates and vice-versa: i.e. we have an absurdity

Computational complexity

These notions apply to decidable problems only
It is based on the performances of a (known) Turing machine that gives the answer with respect to the worst case (i.e. the less favorable input)

- Time complexity

The number of steps that the Turing machine requires for computing the answer, as a function of some numerical dimension of the input (e.g. the number of atoms in a wff)

- Memory complexity

The number of tape cells that the Turing machine requires for computing the answer, as a function of some numerical dimension of the input

- Big-O notation

$$
f(x)=O(g(x))
$$

means that

$$
\exists c>0, \exists x_{0}>0 \quad \text { such that } \quad|f(x)| \leq c|g(x)|, \quad \forall x>x_{0}
$$

Classes P, NP and NP-complete - The SAT problem

- Class P

The class of problems for which there is a Turing machine that requires $O(\operatorname{poly}(n))$ time where poly () is a polynomial of finite degree and n is the dimension of the (worst-case) input

- Class NP

The class of all problems:
a) A method for enumerating all possible answers (i.e. recursive enumerability)
b) An algorithm in class P that verifies if a possible answer is also a solution

It includes all problems in class P (that is, $\mathrm{P} \subseteq \mathrm{NP}$)

Entailment as a Decision Problem

Classes P, NP and NP-complete - The SAT problem

- Class NP-complete

It is a subclass of NP (NP-complete \subseteq NP)
A problem K is NP-complete if every problem in class NP is reducible to K

- Reducibility

For class NP-complete
Consider a problem K for which a decision algorithm $M(K)$ is known
A problem J is reducible to K if there exist a decision algorithm $M(J)$ such that:
a) algorithm $M(K)$ is called just once, as a "subroutine", at the end of $M(J)$
b) apart from $M(K), M(J)$ has polynomial complexity

- The SAT problem

Is NP-complete (historically, it is the first one to be known)
Moral: if we had a polynomial decision algorithm for SAT, we would also have that
$\mathrm{P}=\mathrm{NP}$
This fact is not known, it is believed that: $P \neq N P$
(and a lot will change in the digital world, if this proves to be false)

Satisfiability and decidability (in L_{P})

- Is the decision problem "is the wff φ satisfiable?" decidable?

It can be transformed into a search problem
i.e. finding a possible world (in the set of all possible worlds) that satisfies φ

In the scientific literature, this problem is called "SAT"
Intuition: we can try every possible value assignment for the atoms in φ Hint: the problem is NP-complete

Exhaustive (Tree) Search

Satisfiability and decidability (in L_{P})

Example: is this wff satisfiable?

$\neg(B \vee D \vee \neg(A \wedge C))$

Each leaf in the tree
is the value of the wff
with the corresponding
value assignments

Satisfiability and decidability (in L_{P})

Example: is this wff satisfiable?

$\neg(B \vee D \vee \neg(A \wedge C))$

Satisfiability and decidability (in L_{P})

Example: is this wff satisfiable?

$\neg(B \vee D \vee \neg(A \wedge C))$

This method has $O\left(2^{n}\right)$ time complexity, where n is the number of propositional symbols

[^0]: This is the wff obtained by combing all the wffs in $\Gamma \cup\{\neg \varphi\}$ with \wedge,
 it is called the conjunctive closure of the set $\Gamma \cup\{\neg \varphi\}$

