Artificial Intelligence

Propositional Logic

Marco Piastra

Prologue: Boolean Algebra(s)

Boolean algebras by examples

Start from a finite set of objects W and construct, in a bottom-up fashion, the collection Σ of all possible subsets of W

(Hasse diagrams)

Collections like Σ above are also called the power set of W
which is the collection of all possible subsets of W, also denoted as 2^{W}

Boolean algebras by examples

Start from a finite set of objects W and construct, in a bottom-up fashion, the collection Σ of all possible subsets of W

Boolean algebra (definition)
A non-empty collection of subsets Σ of a set W such that:
1)

$$
\varnothing \in \Sigma
$$

2)

$$
A, B \in \Sigma \Longrightarrow A \cup B \in \Sigma
$$

3)

$$
A \in \Sigma \Longrightarrow A^{c} \in \Sigma
$$

$$
A^{c}:=W-A \text { (the complement of } A \text { with respect to } W \text {) }
$$

Corollaries:

- The set W belongs to any Boolean algebra generated on W
$-\Sigma$ is closed under intersection

Boolean algebras by examples

Start from a finite set of objects W and construct, in a bottom-up fashion, the collection Σ of all possible subsets of W

Checking properties of a Boolean algebra
De Morgan's laws
For any of the structures above
properties can be verified
exhaustively...
For any of the structures above
properties can be verified
exhaustively...
For any of the structures above
properties can be verified
exhaustively...

$$
(A \cup B)^{c}=A^{c} \cap B^{c}
$$

$$
A=\{b\}
$$

$$
B=\{b, c\}
$$

$$
A \cup B=\{b, c\}
$$

$$
(A \cup B)^{c}=\{a\}
$$

$$
\begin{aligned}
& A^{c}=\{a, c\} \\
& B^{c}=\{a\}
\end{aligned}
$$

$A^{c} \cap B^{c}=\{a\}$
$(A \cap B)^{c}=A^{c} \cup B^{c}$

$$
A=\{b\}
$$

$$
B=\{b, c\}
$$

$$
A \cap B=\{b\}
$$

$$
\underset{\text { These sets }}{\text { are identical }}\left(\begin{array}{l}
A \cap B)^{c}=\{a, c\} \\
A^{c}=\{a, c\} \\
B^{c}=\{a\} \\
A^{c} \cup B^{c}=\{a, c\}
\end{array}\right.
$$

Which Boolean algebra for logic?

* Given that all boolean algebras share the same properties (see before) we can adopt the simplest one as reference, namely the one based on $\Sigma:=\{W, \varnothing\}$ i.e. a two-valued algebra: $\{$ nothing, everything $\}$ or $\{$ false, true $\}$ or $\{\perp, \mathrm{T}\}$ or $\{0,1\}$
- Algebraic structure
< $\{0,1\}$, OR, AND, NOT, $0,1>$
- Boolean functions and truth tables

Boolean functions: $f:\{0,1\}^{n} \rightarrow\{0,1\}$
AND, OR and NOT are boolean functions, they are defined explicitly via truth tables

A	B	OR
0	0	0
0	1	1
1	0	1
1	1	1

A	B	AND
0	0	0
0	1	0
1	0	0
1	1	1

A	NOT
0	1
1	0

Composite functions

Truth tables can be defined also for composite functions
For example, to verify logical laws

These columns are identical												
A	B	NOT A	NOT B	A OR B	NOT $(A$ OR $B)$	NOT A AND NOT B	$	$	0	0	1	1
:---:	:---:	:---:	:---:									
0	1	1										
0	1	1	0									
1	0	0										
1	0	0	1									
1	1	0	0									

De Morgan's laws
These columns are identical

A	B	NOT A	NOT B	A AND B	NOT $(A$ AND $B)$	NOT A OR NOT B
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

Adequate basis

- How many basic boolean functions do we need to define any boolean function?

	A_{1}	A_{2}	\ldots	A_{n}	$f\left(A_{1}, A_{2}, \ldots, A_{n}\right)$
	0	0	\ldots	0	f_{1}
	0	0	\ldots	1	f_{2}
	\ldots	\ldots	\ldots	\ldots	\ldots
	\ldots	\ldots	\ldots	\ldots	\ldots
	1	1	\ldots	1	$f_{2^{n}}$

Just $O R, A N D$ and $N O T$: any other function can be expressed as composite function In the generic truth table above:

- For each row where $f=1$, we compose by $A N D$ the n input variables taking either A_{i} when the i-th value is 1 , or $\neg A_{i}$ when i-th value is 0
- We compose by $O R$ all the A_{i} expressions when the i-th value is 1

Other adequate basis

Also \{OR, NOT\} o \{AND, NOT\} are adequate bases
An adequate basis can be obtained by just one 'ad hoc' function: NOR or NAND

A	B	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

A	B	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

- Two remarkable functions: implication and equivalence

Logicians prefer the basis $\{I M P, N O T\}$

A	B	A IMP B
0	0	1
0	1	1
1	0	0
1	1	1

A	B	A EQU B
0	0	1
0	1	0
1	0	0
1	1	1

Identities:
$A \operatorname{IMP} B=\operatorname{NOT} A$ OR B
$A \mathrm{EQU} B=(A \operatorname{IMP} B) \operatorname{AND}(B \operatorname{IMP} A)$

Language and Semantics: possible worlds

Propositiona/logic: the project

i.e. the simplest of 'classical' logics

- Propositions

We consider simple propositions which state something that could be either true or false
"Today is Friday"
"Turkeys are birds with feathers"
"Man is a featherless biped"

- Formal language

A precise and formal language whose atoms are propositions
(i.e. no intention to represent the internal structure of propositions)

Atoms will be composed in complex formulae via a set of syntactic rules

- Formal semantics

A class of formal structures, each representing a possible world or a possible 'state of things'
<This classroom right now>
<My uncle's farm several years ago>
<Ancient Greece at the time of Aristotle's birth>

The class of propositional, semantic structures

Each possible world is a structure $<\{0,1\}, \Sigma, v>$
$\{0,1\}$ are the truth values
Σ is the signature of the formal language: a set of propositional symbols
v is a function : $\Sigma \rightarrow\{0,1\}$ assigning truth values to the symbols in Σ
Propositional symbols (signature)
Each symbol in Σ stands for an actual proposition (in natural language)
In the simple convention, we use the symbols A, B, C, D, \ldots
Caution: Σ is not necessarily finite

Possible worlds

The class of structures contains all possible worlds:

$$
\begin{aligned}
& <\{0,1\}, \Sigma, v> \\
& \left.<\{0,1\}, \Sigma, v^{\prime}\right\rangle \\
& <\{0,1\}, \Sigma, v^{\prime \prime}>
\end{aligned}
$$

Each class of structure shares Σ and $\{0,1\}$
The functions v are different: the assignment of truth values varies, depending on the possible world

Formal language

- In a propositional language L_{P}

A set Σ of propositional symbols: $\Sigma=\{A, B, C, \ldots\}$
Two (primary) logical connectives: \neg, \rightarrow
Three (derived) logical connectives: $\wedge, \vee, \leftrightarrow$
Parenthesis: (,) (there are no precedence rules in this language)

- Well-formed formulae (wff)

Defined via a set of syntactic rules:

```
            The set of all the wff of }\mp@subsup{L}{P}{}\mathrm{ is denoted as wff( }\mp@subsup{L}{P}{}
    A\in\Sigma = A \in wff(L
\varphi}\in\operatorname{wff}(\mp@subsup{L}{P}{})=>(\neg\varphi)\in\operatorname{wff}(\mp@subsup{L}{P}{}
\varphi,\psi\in\operatorname{wff}(\mp@subsup{L}{P}{})=>(\varphi->\psi)\in\operatorname{wff}(\mp@subsup{L}{P}{})
\varphi,\psi\in\operatorname{wff}(\mp@subsup{L}{P}{})=>(\varphi\vee\psi)\in\operatorname{wff}(\mp@subsup{L}{P}{}),\quad(\varphi\vee\psi)\Leftrightarrow((\neg\varphi)->\psi)
\varphi,\psi\in\operatorname{wff}(\mp@subsup{L}{P}{})=>(\varphi\wedge\psi)\in\operatorname{wff}(\mp@subsup{L}{P}{}),\quad(\varphi\wedge\psi)\Leftrightarrow(\neg(\varphi->(\neg\psi)))
\varphi,\psi\in\operatorname{wff}(\mp@subsup{L}{P}{})=>(\varphi\leftrightarrow\psi)\in\operatorname{wff}(\mp@subsup{L}{P}{}),\quad(\varphi\leftrightarrow\psi)\Leftrightarrow((\varphi->\psi)\wedge(\psi->\varphi))
```


Formal semantics: interpretations

- Compositional (i.e. truth-functional) semantics for wff

Given a possible world $\langle\{0,1\}, \Sigma$, $v>$
the function $v: \Sigma \rightarrow\{0,1\}$ can be extended to assign a value to every wff by associating a binary (i.e., Boolean) function to each connective:

```
v(\neg\varphi)=NOT}(v(\varphi)
v(\varphi\wedge\psi) = AND (v(\varphi),v(\psi))
v(\varphi\vee\psi) = OR(v(\varphi),v(\psi))
v(\varphi->\psi) = OR(NOT}(v(\varphi)),v(\psi))\quad(also IMP(v(\varphi),v(\psi))
v(\varphi\leftrightarrow\psi)=
```

- Interpretations

Function v (extended as above) assigns a truth value to each $\varphi \in \operatorname{wff}\left(L_{P}\right)$

$$
v: \operatorname{wff}\left(L_{P}\right) \rightarrow\{0,1\}
$$

Then v is said to be an interpretation of L_{P}
Note that the truth value of any wff φ is univocally determined by the values assigned to each symbol in the signature Σ (compositionality)

Subtleties: object language and metalanguage

- The object language is L_{P}

The formal language of logic
It only contains the items just defined:
$\Sigma, \neg, \rightarrow, \wedge, \vee, \leftrightarrow,(),$,$\quad plus syntactic rules (wff)$

- Meta-language

The formal for defining the properties of the object language and the logic
Small greek letters ($\alpha, \beta, \chi, \varphi, \psi, \ldots$) will be used to denote a generic formula (wff)
Capital greek letters (Γ, Δ, \ldots) will be used to denote a set of formulae
Satisfaction, logical consequence (see after): \vDash
Derivability (see after): -
"if and only if" : "iff"
Implication, equivalence (in general): $\Rightarrow, \Leftrightarrow$

Entailment

About formulae and their hidden relations

- Hypothesis:

```
\(\varphi_{1}=B \vee D \vee \neg(A \wedge C)\)
    "Sally likes Harry" OR "Harry is happy"
    OR NOT ("Harry is human" AND "Harry is a featherless biped")
\(\varphi_{2}=B \vee C\)
    "Sally likes Harry" OR "Harry is a featherless biped"
\(\varphi_{3}=A \vee D\)
    "Harry is human" OR "Harry is happy"
\(\varphi_{4}=\neg B\)
    NOT "Sally likes Harry"
```

- Thesis:

$$
\begin{array}{ll}
\psi=D & \text { And among the propositions } \\
\text { "Harry is happy" } & \text { in the hypothesis? }
\end{array}
$$

Entailment

The overall truth table
for the wff in the example

$$
\begin{aligned}
& \varphi_{1}=B \vee D \vee \neg \neg(A \wedge C) \\
& \varphi_{2}=B \vee C \\
& \varphi_{3}=A \vee D \\
& \varphi_{4}=\neg B \\
& \psi=D
\end{aligned}
$$

Entailment

Notation!

$$
\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\} \models \psi
$$

There is entailment when

A	B	C	D	φ_{1}	φ_{2}	φ_{3}	φ_{4}	ψ
0	0	0	0	1	0	0	1	0
0	0	0	1	1	0	1	1	1
0	0	1	0	1	1	0	1	0
0	0	1	1	1	1	1	1	1
0	1	0	0	1	1	0	0	0
0	1	0	1	1	1	1	0	1
0	1	1	0	1	1	0	0	0
0	1	1	1	1	1	1	0	1
1	0	0	0	1	0	1	1	0
1	0	0	1	1	0	1	1	1
1	0	1	0	0	1	1	1	0
1	0	1	1	1	1	1	1	1
1	1	0	0	1	1	1	0	0
1	1	0	1	1	1	1	0	1
1	1	1	0	1	1	1	0	0
1	1	1	1	1	1	1	0	1

all the possible worlds that satisfy $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\}$ satisfy ψ as well

$\Gamma \models \varphi$

There is entailment iff every world that satisfies Γ also satisfies φ

Satisfaction, models

- Possible worlds and truth tables

Examples: $\varphi=(A \vee B) \wedge C$
Different rows, different groups of worlds All rows, all possible worlds

Caution: in each possible world every $\varphi \in \operatorname{wff}\left(L_{P}\right)$ has a truth value so a row in a table is not a single world, per se

A	B	C	$A \vee B$	$(A \vee B) \wedge C$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

A possible world satisfies a wff φ iff $v(\varphi)=1$
We also write $\langle\{0,1\}, \Sigma, v\rangle \vDash \varphi$
In the truth table above, the rows that satisfy φ are in gray

Such possible world w is also said to be a model of φ

By extension, a possible world satisfies (i.e. is model of) a set of wff $\Gamma=\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right\}$
iff w satisfies (i.e. is model of) each of its wff $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$

Tautologies, contradictions

- A tautology

Is a (propositional) wff that is always satisfied

It is also said to be valid
Any wff of the type $\varphi \vee \neg \varphi$ is a tautology

- A contradiction

Is a (propositional) wff, that cannot be satisfied

Any wff of the type $\varphi \wedge \neg \varphi$ is a contradiction

Notes:

A	$A \wedge \neg A$	$A \vee \neg A$
0	0	1
1	0	1

A	B	$(\neg A \vee B) \vee(\neg B \vee A)$
0	0	1
0	1	1
1	0	1
1	1	1

A	B	$\neg((\neg A \vee B) \vee(\neg B \vee A))$
0	0	0
0	1	0
1	0	0
1	1	0

- Not all wff are either tautologies or contradictions
- If φ is a tautology then $\neg \varphi$ is a contradiction and vice-versa

Formulae and subsets

- Consider the set W of all possible worlds

Each wff φ of L_{P} corresponds to a subset of W
i.e. the subset of all possible worlds that satisfy it in other words φ corresponds to $\{w: w \models \varphi\}$
The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

The set of all possible worlds

Formulae and subsets

- Consider the set W of all possible worlds

Each wff φ of L_{P} corresponds to a subset of W

i.e. the subset of all possible worlds that satisfy it in other words φ corresponds to $\{w: w \models \varphi\}$
The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

Formulae and subsets

- Consider the set W of all possible worlds

Each wff φ of L_{P} corresponds to a subset of W
i.e. the subset of all possible worlds that satisfy it in other words φ corresponds to $\{w: w \models \varphi\}$
The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

" φ is a contradiction"
"none of the possible worlds in W is a model of φ "
" φ is not (logically) valid"

Furthermore:
" φ is not satisfiable"
" φ is falsifiable"

Formulae and subsets

- Consider the set W of all possible worlds

Each wff φ of L_{P} corresponds to a subset of W
i.e. the subset of all possible worlds that satisfy it in other words φ corresponds to $\{w: w \models \varphi\}$
The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

Formulae, subsets and entailment

- Consider the set of all possible worlds W

Formulae, subsets and entailment

- Consider the set of all possible worlds W

"All possible worlds that are models of φ_{1} "
$\left\{\varphi_{1}\right\} \not \models \psi$
because the set of models for $\left\{\varphi_{1}\right\}$
is not contained in the set of models of ψ

Formulae, subsets and entailment

- Consider the set of all possible worlds W

"All possible worlds that are models of φ_{2} "
$\left\{\varphi_{1}, \varphi_{2}\right\} \not \models \psi$
because the set of models of $\left\{\varphi_{1}, \varphi_{2}\right\}$ (i.e. the intersection of the two subsets)
is not contained in the set of models of ψ

Formulae, subsets and entailment

- Consider the set of all possible worlds W

Formulae, subsets and entailment

- Consider the set of all possible worlds W

"All possible worlds that are models of φ_{4} "
$\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\} \models \psi$
Because the set of models for $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\}$ is contained in the set of models of ψ

Formulae, subsets and entailment

- Consider the set of all possible worlds W

"All possible worlds that are models for $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\}$ "
$\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\} \models \psi$
Because the set of models for $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\}$ is contained in the set of models of ψ

In the case of the example, all the wff $\varphi 1, \varphi 2, \varphi 3, \varphi 4$ are needed for the relation of entailment to hold

$\Gamma \models \varphi$

There is entailment iff every world that satisfies Γ also satisfies φ

Further Properties

Symmetric entailment = logical equivalence

- Equivalence

Let φ and ψ be wff such that:

$$
\varphi \vDash \psi \text { e } \psi \vDash \varphi
$$

The two wff are also said to be logically equivalent
In symbols: $\varphi \equiv \psi$

- Substitutability

Two equivalent wff have exactly the same models
In terms of entailment, equivalent wff are substitutable
(even as sub-formulae)
In the example: $\quad\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\} \models \psi$

$$
\begin{array}{ll}
\varphi_{1}=B \vee D \vee \neg(A \wedge C) & \varphi_{1}=B \vee D \vee(A \rightarrow \neg C) \\
\varphi_{2}=B \vee C & \varphi_{2}=B \vee C \\
\varphi_{3}=A \vee D & \varphi_{3}=\neg A \rightarrow D \\
\varphi_{4}=\neg B & \varphi_{4}=\neg B \\
\psi=D & \psi=D
\end{array}
$$

Implication and Inference Schemas

The wff of the problem can be re-written using equivalent expressions:
(using the basis $\{\rightarrow, \neg\}$)

$$
\begin{array}{ll}
\varphi_{1}=C \rightarrow(\neg B \rightarrow(A \rightarrow D)) & \varphi_{1}=B \vee D \vee \neg(A \wedge C) \\
\varphi_{2}=\neg B \rightarrow C & \varphi_{2}=B \vee C \\
\varphi_{3}=\neg A \rightarrow D & \varphi_{3}=A \vee D \\
\varphi_{4}=\neg B & \varphi_{4}=\neg B \\
\psi=D & \psi=D
\end{array}
$$

- Some inference schemas are valid in terms of entailment:

$$
\begin{aligned}
& \varphi \rightarrow \psi \\
& \frac{\varphi}{\psi}
\end{aligned}
$$

It can be verified that:

$$
\varphi \rightarrow \psi, \varphi \models \psi
$$

Analogously:

$$
\varphi \rightarrow \psi, \neg \psi \models \neg \varphi
$$

Modern formal logic: fundamentals

- Formal language (symbolic)

A set of symbols, not necessarily finite
Syntactic rules for composite formulae (wff)

- Formal semantics

For each formal language, a class of structures (i.e. a class of possible worlds)
In each possible world, every wff in the language is assigned a value In classical propositional logic, the set of values is the simplest: $\{1,0\}$

- Satisfaction, entailment

A wff is satisfied in a possible world if it is true in that possible world
In classical propositional logic, iff the wff has value 1 in that world (Caution: the definition of satisfaction will become definitely more complex with first order logic)

Entailment is a relation between a set of wff and a wff

This relation holds when all possible worlds satisfying the set also satisfy the wff

Properties of entailment (classical logic)

- Compactness

Consider a set of wff Γ (not necessarily finite)
$\Gamma \models \varphi \quad \Rightarrow$ There exist a finite subset $\Sigma \subseteq \Gamma$ such that $\Sigma \models \varphi$
(This follows from compositionality, see textbook for a proof)

- Monotonicity

For any Γ and Δ, if $\Gamma \models \varphi$ then $\Gamma \cup \Delta \models \varphi$
In fact, any entailment relation between φ and Γ remains valid even if Γ grows larger

- Transitivity

If for all $\varphi \in \Sigma$ we have $\Gamma \models \varphi$, then if $\Sigma \models \psi$ then $\Gamma \models \psi$
(obvious)

- Ex absurdo ...
$\{\varphi, \neg \varphi\} \models \psi$
An inconsistent (i.e. contradictory) set of wff entails anything
«Ex absurdo sequitur quodlibet»

What we have seen so far

