

Propositional Logic

Marco Piastra

Prologue: Boolean Algebra(*s*)

Boolean algebras by examples

Start from a *finite* set of objects W and construct, in a *bottom-up fashion*, the collection Σ of all possible subsets of W

Collections like Σ above are also called the **power set** of W which is the collection of all possible subsets of W, also denoted as 2^W

Boolean algebras by examples

Start from a *finite* set of objects W and construct, in a *bottom-up fashion*, the collection Σ of all possible subsets of W

Boolean algebra (definition)

A non-empty collection of subsets Σ of a set W such that:

- 1) $\varnothing \in \Sigma$
- $A, B \in \Sigma \implies A \cup B \in \Sigma$
- $A \in \Sigma \implies A^c \in \Sigma$

 $A^c:=W-A$ (the complement of A with respect to W)

Corollaries:

- The set W belongs to any Boolean algebra generated on W
- Σ is closed under *intersection*

Boolean algebras by examples

Start from a *finite* set of objects W and construct, in a *bottom-up fashion*, the collection Σ of all possible subsets of W

Which Boolean algebra for logic?

* Given that all boolean algebras share the same properties (*see before*) we can adopt the simplest one as reference, namely the one based on $\Sigma := \{W, \emptyset\}$ i.e. a *two-valued* algebra: {*nothing*, *everything*} or {*false*, *true*} or { \bot , \top } or {0, 1}

Algebraic structure

< {0,1}, OR, AND, NOT, 0, 1>

Boolean functions and truth tables

Boolean functions: $f: \{0, 1\}^n \rightarrow \{0, 1\}$

AND, OR and NOT are boolean <u>functions</u>, they are defined explicitly via *truth tables*

A	В	OR
0	0	0
0	1	1
1	0	1
1	1	1

A	В	AND
0	0	0
0	1	0
1	0	0
1	1	1

A	NOT
0	1
1	0

Composite functions

Truth tables can be defined also for composite functions

For example, to verify logical laws

Adequate basis

How many basic boolean functions do we need to define any boolean function?

♠	A_1	A_2		A_n	$f(A_1, A_2,, A_n)$
I	0	0	•••	0	f_1
rows	0	0	•••	1	f_2
$2^n \kappa$	•••	•••	•••	•••	
	•••	•••	•••	•••	•••
♦	1	1	•••	1	f_{2^n}

Just *OR*, *AND* and *NOT*: any other function can be expressed as composite function In the generic *truth table* above:

- For each row where f = 1, we compose by AND the *n* input variables taking either A_i when the *i*-th value is 1, or $\neg A_i$ when *i*-th value is 0
- We compose by *OR* all the A_i expressions when the *i*-th value is 1

Other adequate basis

Also {OR, NOT} o {AND, NOT} are adequate bases

An adequate basis can be obtained by just one 'ad hoc' function: NOR or NAND

A	В	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

A	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

Two remarkable functions: *implication* and *equivalence*

Logicians prefer the basis {*IMP*, *NOT*}

A	В	A IMP B
0	0	1
0	1	1
1	0	0
1	1	1

A	В	A EQU B
0	0	1
0	1	0
1	0	0
1	1	1

Identities:

A IMP B = NOT A OR B

A EQU B = (A IMP B) AND (B IMP A)

Language and Semantics: possible worlds

Propositional logic: the project

i.e. the simplest of 'classical' logics

Propositions

We consider simple *propositions* which state something that could be either true or false

"Today is Friday" "Turkeys are birds with feathers" "Man is a featherless biped"

Formal *language*

A precise and formal language whose **atoms** are *propositions* (i.e. no intention to represent the internal structure of *propositions*) Atoms will be composed in complex formulae via a set of *syntactic* rules

Formal semantics

A class of formal structures, each representing a possible world or a possible 'state of things'

<This classroom right now> <My uncle's farm several years ago> <Ancient Greece at the time of Aristotle's birth>

The class of propositional, semantic structures

Each possible world is a structure < {0,1}, Σ , v>

 $\{0,1\}$ are the truth values

 Σ is the *signature* of the formal language: a set of propositional symbols

v is a *function* : $\Sigma \rightarrow \{0,1\}$ assigning truth values to the symbols in Σ

Propositional symbols (signature)

Each symbol in Σ stands for an actual *proposition* (in natural language)

In the simple convention, we use the symbols A, B, C, D, ...

Caution: Σ is not necessarily *finite*

Possible worlds

The class of structures contains all possible worlds:

 $< \{0,1\}, \Sigma, v > < \{0,1\}, \Sigma, v' > < \{0,1\}, \Sigma, v' > < \{0,1\}, \Sigma, v'' >$

•••

Each class of structure shares Σ and $\{0,1\}$

The functions v are different: the assignment of truth values varies, depending on the possible world

Formal language

In a propositional language L_P

A set Σ of propositional symbols: $\Sigma = \{A, B, C, ...\}$ Two (primary) **logical connectives**: \neg, \rightarrow Three (derived) **logical connectives**: $\land, \lor, \leftrightarrow$ Parenthesis: (,) (there are no *precedence rules* in this language)

Well-formed formulae (wff)

Defined via a set of syntactic rules:

```
The set of all the wff of L_p is denoted as wff(L_p)

A \in \Sigma \Rightarrow A \in wff(L_p)

\varphi \in wff(L_p) \Rightarrow (\neg \varphi) \in wff(L_p)

\varphi, \psi \in wff(L_p) \Rightarrow (\varphi \rightarrow \psi) \in wff(L_p)

\varphi, \psi \in wff(L_p) \Rightarrow (\varphi \lor \psi) \in wff(L_p), \quad (\varphi \lor \psi) \Leftrightarrow ((\neg \varphi) \rightarrow \psi)

\varphi, \psi \in wff(L_p) \Rightarrow (\varphi \land \psi) \in wff(L_p), \quad (\varphi \land \psi) \Leftrightarrow (\neg (\varphi \rightarrow (\neg \psi)))

\varphi, \psi \in wff(L_p) \Rightarrow (\varphi \leftrightarrow \psi) \in wff(L_p), \quad (\varphi \leftrightarrow \psi) \Leftrightarrow ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))
```

Formal *semantics*: interpretations

Compositional (i.e. truth-functional) semantics for wff

Given a possible world < {0,1}, Σ , v>

the function $v : \Sigma \rightarrow \{0,1\}$ can be <u>extended</u> to assign a value to *every* wff by associating a binary (i.e., Boolean) function to each connective:

Interpretations

Function v (extended as above) assigns a truth value <u>to each</u> $\varphi \in wff(L_p)$

 $v: \mathrm{wff}(L_P) \to \{0,1\}$

Then v is said to be an *interpretation* of L_P

Note that the truth value of any $wff \varphi$ is univocally determined by the values assigned to each symbol in the *signature* Σ (compositionality)

Subtleties: object language and metalanguage

• The *object language* is L_P

The formal language of logic

It only contains the items just defined:

 Σ , \neg , \rightarrow , \land , \lor , \leftarrow , (,), plus syntactic rules (wff)

Meta-language

The formal for defining the properties of the object language and the logic Small greek letters (α , β , χ , φ , ψ , ...) will be used to denote a generic formula (wff) Capital greek letters (Γ , Δ , ...) will be used to denote a set of formulae Satisfaction, logical consequence (see after): \models Derivability (see after): \models "if and only if" : "iff" Implication, equivalence (in general): \Rightarrow , \Leftrightarrow

Entailment

About formulae and their hidden relations

Hypothesis:

 $\varphi_1 = B \lor D \lor \neg (A \land C)$

"Sally likes Harry" OR "Harry is happy" OR NOT ("Harry is human" AND "Harry is a featherless biped")

 $\varphi_2 = B \vee C$

"Sally likes Harry" OR "Harry is a featherless biped"

 $\varphi_3 = A \vee D$

"Harry is human" OR "Harry is happy"

 $\varphi_4 = \neg B$

NOT "Sally likes Harry"

Thesis:

 $\psi = D$ "Harry is happy" Is there any **logical relation** between hypothesis and thesis?

And among the propositions in the hypothesis?

Artificial Intelligence 2021–2022

Propositional Logic [17]

Entailment

The overall truth table for the wff in the example

 $\varphi_{1} = B \lor D \lor \neg (A \land C)$ $\varphi_{2} = B \lor C$ $\varphi_{3} = A \lor D$ $\varphi_{4} = \neg B$ $\psi = D$

Entailment

$$\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\} \models \psi$$

There is entailment when all the *possible worlds* that *satisfy* { φ_1 , φ_2 , φ_3 , φ_4 } *satisfy* ψ as well

Notation!

There is entailment iff
every world that satisfies
$$\Gamma$$

also satisfies φ

Satisfaction, models

Possible worlds and truth tables

Examples: $\varphi = (A \lor B) \land C$

Different rows, different groups of worlds All rows, all possible worlds

Caution: in each possible world <u>every</u> $\varphi \in wff(L_p)$ has a truth value so a row in a table is not a single world, per se

Α	В	С	$A \lor B$	$(A \lor B) \land C$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

A possible world **satisfies** a wff φ iff $v(\varphi) = 1$

We also write $\langle \{0,1\}, \Sigma, v \rangle \models \varphi$

In the truth table above, the rows that satisfy arphi are in gray

Such possible world w is also said to be a **model** of φ

By extension, a possible world *satisfies* (i.e. is *model* of) a <u>set</u> of wff $\Gamma = {\varphi_1, \varphi_2, ..., \varphi_n}$ iff *w* satisfies (i.e. is *model* of) each of its wff $\varphi_1, \varphi_2, ..., \varphi_n$

Tautologies, contradictions

A tautology

Is a (propositional) wff that is always satisfied It is also said to be **valid** Any wff of the type $\varphi \lor \neg \varphi$ is a tautology

A contradiction

ls a (propositional) wff, that cannot be satisfied

Any wff of the type $\varphi \land \neg \varphi$ is a contradiction

A	$A \land \neg A$	$A \lor \neg A$
0	0	1
1	0	1

Α	В	$(\neg A \lor B) \lor (\neg B \lor A)$
0	0	1
0	1	1
1	0	1
1	1	1

A	В	$\neg((\neg A \lor B) \lor (\neg B \lor A))$
0	0	0
0	1	0
1	0	0
1	1	0

Notes:

Not all wff are either tautologies or contradictions

• If φ is a *tautology* then $\neg \varphi$ is a *contradiction* and vice-versa

• Consider the set *W* of all possible worlds

Each wff φ of L_P corresponds to a **subset** of Wi.e. the subset of all possible worlds that *satisfy* it in other words φ corresponds to $\{w : w \models \varphi\}$ The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

• Consider the set *W* of all possible worlds

Each wff φ of L_P corresponds to a **subset** of Wi.e. the subset of all possible worlds that *satisfy* it in other words φ corresponds to $\{w : w \models \varphi\}$ The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

" φ is a tautology"

"any possible world in W is a model of φ "

" φ is (logically) *valid*"

Furthermore: "φ is satisfiable" "φ is <u>not</u> falsifiable"

• Consider the set *W* of all possible worlds

Each wff φ of L_P corresponds to a **subset** of Wi.e. the subset of all possible worlds that *satisfy* it in other words φ corresponds to $\{w : w \models \varphi\}$ The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

" φ is a contradiction"

"none of the possible worlds in W is a model of φ "

" φ is <u>not</u> (logically) *valid*"

Furthermore: "φ is <u>not</u> satisfiable" "φ is falsifiable"

• Consider the set *W* of all possible worlds

Each wff φ of L_P corresponds to a **subset** of Wi.e. the subset of all possible worlds that *satisfy* it in other words φ corresponds to $\{w : w \models \varphi\}$ The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

" φ is neither a contradiction nor a tautology"

"some possible worlds in W are *model* of φ , others are not"

" φ is <u>not</u> (logically) *valid*"

Furthermore: "φ is satisfiable" "φ is falsifiable"

• Consider the set of all possible worlds *W*

• Consider the set of all possible worlds *W*

"All possible worlds that are *models* of φ_1 "

 $\{ \varphi_1 \} \not\models \psi$ because the set of models for $\{ \varphi_1 \}$ is <u>not</u> contained in the set of models of ψ

• Consider the set of all possible worlds *W*

"All possible worlds that are *models* of φ_2 "

 $\{\varphi_1,\varphi_2\}\not\models\psi$

because the set of models of { φ_1, φ_2 } (i.e. the *intersection* of the two subsets) is <u>not</u> contained in the set of models of ψ

• Consider the set of all possible worlds *W*

"All possible worlds that are *models* of φ_3 "

 $\{ \varphi_1, \varphi_2, \varphi_3 \} \not\models \psi$ because the set of models of $\{ \varphi_1, \varphi_2, \varphi_3 \}$ is <u>not</u> contained in the set of models of ψ

• Consider the set of all possible worlds *W*

"All possible worlds that are models of $arphi_4$ "

 $\{\varphi_1,\varphi_2,\varphi_3,\varphi_4\}\models\psi$

Because the set of models for { $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ } is contained in the set of models of ψ

• Consider the set of all possible worlds *W*

"All possible worlds that are models for { $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ }"

 $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\} \models \psi$

Because the set of models for { $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ } is contained in the set of models of ψ In the case of the example, all the wff $\varphi 1, \varphi 2, \varphi 3, \varphi 4$ are needed for the relation of *entailment* to hold

There is entailment iff
every world that satisfies
$$\Gamma$$

also satisfies φ

Further Properties

Symmetric entailment = logical equivalence

Equivalence

Let φ and ψ be wff such that:

 $\varphi \models \psi \in \psi \models \varphi$

The two wff are also said to be *logically equivalent*

In symbols: $\varphi \equiv \psi$

Substitutability

Two equivalent wff have exactly the same *models*

In terms of entailment, equivalent wff are substitutable

(even as sub-formulae)

In the example: $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\} \models \psi$

$$\begin{array}{ll} \varphi_1 = B \lor D \lor \neg (A \land C) & \varphi_1 = B \lor D \lor (A \rightarrow \neg C) \\ \varphi_2 = B \lor C & \varphi_2 = B \lor C \\ \varphi_3 = A \lor D & \varphi_4 = \neg B \\ \psi = D & \psi = D \end{array}$$

Implication and Inference Schemas

The wff of the problem can be re-written using equivalent expressions: (using the basis $\{\rightarrow, \neg\}$)

$\varphi_1 = C \to (\neg B \to (A \to D))$	$\varphi_1 = B \lor D \lor \neg (A \land C)$
$\varphi_2 = \neg B \rightarrow C$	$\varphi_2 = B \lor C$
$\varphi_3 = \neg A \rightarrow D$	$\varphi_3 = A \lor D$
$arphi_4 = \neg B$	$\varphi_4 = \neg B$
$\psi = D$	$\psi = D$

• Some *inference schemas* are *valid* in terms of *entailment*:

$$\begin{array}{c} \varphi \to \psi \\ \frac{\varphi}{\psi} \end{array}$$
It can be verified that:

$$\varphi \to \psi, \varphi \models \psi$$
Analogously:

$$\varphi \to \psi, \neg \psi \models \neg \varphi$$

Modern formal logic: fundamentals

Formal language (symbolic)

A set of symbols, not necessarily *finite* Syntactic rules for composite formulae (wff)

Formal semantics

For <u>each</u> formal language, a *class* of structures (i.e. a class of *possible worlds*)
In each possible world, <u>every</u> wff in the language is assigned a *value*In classical propositional logic, the set of values is the simplest: {1, 0}

Satisfaction, entailment

A wff is *satisfied* in a possible world if it is <u>true</u> in that possible world In classical propositional logic, iff the wff has value 1 in that world (Caution: the definition of *satisfaction* will become definitely more complex with *first order logic*)

Entailment is a relation between a set of wff and a wff

This relation holds when all possible worlds satisfying the set also satisfy the wff

Properties of entailment (classical logic)

Compactness

Consider a set of wff Γ (not necessarily *finite*)

 $\Gamma \models \varphi \quad \Rightarrow$ There exist a *finite* subset $\Sigma \subseteq \Gamma$ such that $\Sigma \models \varphi$

(This follows from *compositionality*, see textbook for a proof)

Monotonicity

For any Γ and Δ , if $\Gamma \models \varphi$ then $\Gamma \cup \Delta \models \varphi$

In fact, any entailment relation between arphi and $\ \Gamma$ remains valid even if $\ \Gamma$ grows larger

Transitivity

If for all $\varphi \in \Sigma$ we have $\Gamma \models \varphi$, then if $\Sigma \models \psi$ then $\Gamma \models \psi$ (obvious)

• Ex absurdo ...

 $\{\varphi,\,\neg\varphi\}\models\psi$

An inconsistent (i.e. contradictory) set of wff entails anything

«Ex absurdo sequitur quodlibet»

What we have seen so far

