Artificial Intelligence

Unsupervised Learning

Marco Piastra

Vector quantization

The basic idea is to replace each real-valued vector $\mathbf{x} \in \mathbb{R}^d$ with a discrete symbol $\mathbf{w}_j \in \mathbb{R}^d$ which belongs to a codebook of k prototypes $\theta := \{\mathbf{w}_1, \dots, \mathbf{w}_k\}$

Each data vector is encoded by using the index of the most similar prototype, where similarity is measured in terms, for instance, of Euclidean distance:

$$w(\mathbf{x}) := \operatorname{argmin}_{\mathbf{w}_j} \|\mathbf{x} - \mathbf{w}_j\|$$

For instance, part of mpeg4 and QuickTime (Apple) video compression algorithms work in this way and so does the Ogg Vorbis audio compression algorithm

Given a set $D := \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ of observations (i.e. vectors in \mathbb{R}^d) and a set $\theta := \{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ of k prototypes (i.e. vectors in \mathbb{R}^d)

Clustering problem: find an assignment function $w : \mathbb{R}^d \to W$ such that the objective (loss) function:

$$J(D, \theta) := \frac{1}{2} \sum_{i=1}^{N} \|\mathbf{x}_i - w(\mathbf{x}_i)\|^2$$

is minimized.

k-means algorithm:

- 1) Position the k prototypes at random
- 2) Assign each observation to its closest prototype

$$w(\mathbf{x}_i) := \operatorname{argmin}_{\mathbf{w}_i} \|\mathbf{x}_i - \mathbf{w}_j\|$$

3) Position each prototype at the centroid of the observations assigned to it

$$\mathbf{w}_j = \frac{1}{|D(\mathbf{w}_j)|} \sum_{D(\mathbf{w}_j)} \mathbf{x}_i \qquad \text{where } D(\mathbf{w}_j) := \{ \mathbf{x}_i \in D \mid w(\mathbf{x}_i) = \mathbf{w}_j \}$$

4) Unless no prototype was moved in step 3), go back to step 2)

This algorithm converges to a $\underline{\operatorname{local}}$ minimum of $J(D,\theta)$

Why does the algorithm work: alternate optimization (also 'coordinate descent')

Step 2): Assign observations while keeping the k prototype fixed

$$w(\mathbf{x}_i) := \operatorname{argmin}_{\mathbf{w}_j} \|\mathbf{x}_i - \mathbf{w}_j\|$$

minimizes each of the terms in $I(D, \theta) := \frac{1}{N} \|\mathbf{x}_i - \mathbf{w}_i\|$

which minimizes each of the terms in $J(D,\theta):=rac{1}{2}\sum_{i=1}^N\|\mathbf{x}_i-w(\mathbf{x}_i)\|^2$

Step 3): Reposition the k prototypes while keeping the assignments fixed

$$J(D, \theta) := \frac{1}{2} \sum_{i=1}^{N} \|\mathbf{x}_i - w(\mathbf{x}_i)\|^2 = \frac{1}{2} \sum_{j=1}^{N} \sum_{D(\mathbf{w}_j)} (\mathbf{x}_i - \mathbf{w}_j)^2$$

$$\frac{\partial}{\partial \mathbf{w}_{j}} J(D, \theta) = \frac{\partial}{\partial \mathbf{w}_{j}} \frac{1}{2} \sum_{D(\mathbf{w}_{j})} (\mathbf{x}_{i} - \mathbf{w}_{j})^{2} = \frac{\partial}{\partial \mathbf{w}_{j}} \frac{1}{2} \sum_{D(\mathbf{w}_{j})} (\mathbf{x}_{i} - \mathbf{w}_{j})^{T} (\mathbf{x}_{i} - \mathbf{w}_{j})$$

$$= \frac{\partial}{\partial \mathbf{w}_{j}} \frac{1}{2} \sum_{D(\mathbf{w}_{j})} (\mathbf{x}_{i}^{2} + \mathbf{w}_{j}^{2} - 2 \mathbf{x}_{i}^{T} \mathbf{w}_{j}) = \sum_{D(\mathbf{w}_{j})} (\mathbf{w}_{j} - \mathbf{x}_{i})$$

then, by imposing $\frac{\partial}{\partial \mathbf{w}_i} J(D, \theta) = 0$ we obtain

$$\mathbf{w}_j = \frac{1}{|D(\mathbf{w}_j)|} \sum_{D(\mathbf{w}_j)} \mathbf{x}_i$$

Discussion of the *k-means algorithm*

- a) At each step of the algorithm $J(D, \theta)$ cannot increase: only decrease or stay equal
- b) The algorithm is a variant of a *gradient descent*, in which at each step the *gradient descent* is performed on one subset of variables only
- c) It must reach a *fixed point*, where both gradients vanish
- d) But the only guarantee is that the algorithm reaches a local minimum (unless it gets stuck in a saddle point)

Given a set $D:=\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$ of observations (i.e. vectors in \mathbb{R}^d) and a set $\theta := \{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ of k prototypes (i.e. vectors in \mathbb{R}^d)

Position each prototype at the *centroid* of the observations in its Voronoi cell

Voronoi cell:

$$V(\mathbf{w}_j) := \{ \mathbf{x} \in \mathbb{R}^d \mid ||\mathbf{x} - \mathbf{w}_j|| \le ||\mathbf{x} - \mathbf{w}_l||, \forall l \ne j \}$$

Voronoi tesselation: the complex of all Voronoi cells of θ

Algorithm (rewritten):

- Position the k prototypes at random
- Assign each observation to its Voronoi cell

$$w(\mathbf{x}_i) := \mathbf{w}_j \mid \mathbf{x}_i \in V(\mathbf{w}_j)$$

Unless no prototype was moved in step 3), go back to step 2)

k-means

An example run of the algorithm

The landmarks (empty circles) become black when they cease to move

Expected value of a random variable

(also expectation)

Basic definition

$$\mathbb{E}_X[X] := \sum_{x \in \mathcal{X}} x \ P(X = x)$$

A linear operator

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$
$$\mathbb{E}[cX] = c\mathbb{E}[X]$$

More concise notation

$$\mathbb{E}[X] := \sum_{x \in \mathcal{X}} x \ P(x)$$

Continuous case

$$\mathbb{E}[X] := \int_{x \in \mathcal{X}} x \ p(x) dx$$

Conditional expectation

$$\mathbb{E}_X[X|Y=y] = \mathbb{E}[X|Y=y] := \sum_{x \in \mathcal{X}} x \ P(X=x|Y=y)$$

Iterated expectation (see Wikipedia)

$$\mathbb{E}_X[X] = \mathbb{E}_Y[\mathbb{E}_X[X|Y]]$$

Joint Expected Value

The **expected value** of a function f of a <u>set</u> of random variables $\{X_i\}$ is

$$\mathbb{E}[f(\{X_i\})] := \sum_{\{X_i\}} f(\{X_i\}) P(\{X_i\})$$

the sum is over all possible combinations of values of the random variables

(Unless specified otherwise, the \mathbb{E} operator acts over *all* the random variables enclosed)

The extension to the continuous case is obvious

Incomplete observations

Example: 'Hidden Markov' model

Terminology:

hidden = latent = always unobserved missing = unobserved (in a data set)

Typically, Z_i nodes are hidden, i.e. non-observables

$$P(\{X_i\}, \{Z_j\}) = P(Z_1) P(X_1 | Z_1) \prod_{i=2}^n P(Z_i | Z_{i-1}) P(X_i | Z_i)$$
 Joint distribution

Problem

MLE of parameters θ starting from partial observations of the $\{X_i\}$ variables <u>only</u>

In other terms, this is the MLE of the likelihood function

$$L(\theta | D) = P(D | \theta) = \sum_{\{Z_i\}} P(D, \{Z_j\} | \theta)$$

Note that the <u>model</u> (= the probability function) and the (partial) <u>observations</u> are known, the <u>parameters</u> and the values of some <u>variables</u> are <u>hidden</u>

An experiment with two coins

5 sets, 10 tosses per set

At each step, one coin is selected at random (with equal probability) and then tossed ten times

24 H, 6 T

Random variables: X number of heads, Z selected coin (i.e A or B)

Parameters to be learnt: $\theta = \{ \theta_A, \theta_B \}$ probabilities of landing on head of A and B, resp.

9 H, 11 T

$$\theta_A^* = \frac{N_{A=1}}{N_A} \qquad \theta_B^* = \frac{N_{B=1}}{N_B}$$

An experiment with two coins

At each step, one coin is selected at random (with equal probability) and then tossed ten times

Random variables: X number of heads, Z selected coin (i.e A or B)

Parameters to be learnt: $\theta = \{ \theta_A, \theta_B \}$ probabilities of landing on head of A and B, resp.

• What if Z is hidden (= latent, = unobserved)? The results of each sequence of coin tosses are known, but not the coin selected

Figure from http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html

MLE given expected observations

Figure from http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html

Converged?

Figure from

http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html

An aside: Jensen's inequality

A relationship between probability and geometry

When f is convex function

$$f(E[{X_i}]) \le E[f({X_i})]$$

f is **convex** when for any two points p_i and p_j the segment $(p_i - p_j)$ is not below f

That is, when

$$\lambda f(x_i) + (1 - \lambda) f(x_j) \ge f(\lambda x_i + (1 - \lambda) x_j) \quad \forall \lambda \in [0,1]$$

Furthermore, f is **strictly convex** when

$$\lambda f(x_i) + (1 - \lambda)f(x_j) > f(\lambda x_i + (1 - \lambda)x_j) \quad \forall \lambda \in (0, 1)$$

Corollary:

when f is strictly convex, if and only if all the variables in $\{X_i\}$ are constant it is true that

$$f(E[{X_i}]) = E[f({X_i})]$$

Dual results also hold for *concave* functions

An aside: Jensen's inequality

A relationship between probability and geometry

When f is convex function

$$f(E[{X_i}]) \le E[f({X_i})]$$

To see this, consider

$$\boldsymbol{p} = \lambda_1 \boldsymbol{p}_1 + \lambda_2 \boldsymbol{p}_2 + \lambda_3 \boldsymbol{p}_3 + \lambda_4 \boldsymbol{p}_4$$

i.e. a *linear combination* of p_i points

This is an **affine** combination if $\sum \lambda_i = 1$ and it is a **convex** combination if also $\lambda_i \ge 0$, $\forall i$

When the λ_i define a probability, then p is a convex combination of p_i points

Any convex combination of p_i points lies inside their **convex hull** (see figure) and therefore above f:

$$\sum_{i} \lambda_{i} f(x_{i}) \geq f(\sum_{i} \lambda_{i} x_{i})$$

Corollary: the only way to make the convex hull be <u>on</u> f is to shrink it to a single point (i.e. the Jensen's corollary)

Incomplete observations

Likelihood function with hidden random variables

$$\begin{split} L(\theta \,|\, D) &= P(D \,|\, \theta) = \prod_{m} P(D_m \,|\, \theta) \\ \ell(\theta \,|\, D) &= \sum_{m} \log P(D_m \,|\, \theta) = \sum_{m} \log \sum_{\{Z_i\}} P(D_m, \{Z_i\} \,|\, \theta_k) \\ &= \sum_{m} \log \sum_{\{Z_i\}} Q_m(\{Z_i\}) \frac{P(D_m, \{Z_i\} \,|\, \theta)}{Q_m(\{Z_i\})} \\ &= \sum_{m} \log E_{Q_m(\{Z_i\})} \bigg[\frac{P(D_m, \{Z_i\} \,|\, \theta)}{Q_m(\{Z_i\})} \bigg] \geq \sum_{m} E_{Q_m(\{Z_i\})} \bigg[\log \frac{P(D_m, \{Z_i\} \,|\, \theta)}{Q_m(\{Z_i\})} \bigg] \\ &= \sum_{m} \sum_{\{Z_i\}} Q_m(\{Z_i\}) \log \frac{P(D_m, \{Z_i\} \,|\, \theta)}{Q_m(\{Z_i\})} \end{split}$$

Expectation-Maximization (EM) Algorithm

Alternate optimization (coordinate ascent)

Log-likelihood function:

Keep θ constant, define $Q_m(\{Z_i\})$ so that the right side of the inequality is maximized

$$Q_{m}(\{Z_{i}\}) := \frac{P(D_{m},\{Z_{i}\} \mid \theta)}{\sum_{\{Z_{i}\}} P(D_{m},\{Z_{i}\} \mid \theta)} = \frac{P(D_{m},\{Z_{i}\} \mid \theta)}{P(D_{m} \mid \theta)} = P(\{Z_{i}\} \mid D_{m},\theta) =: p_{\{Z_{i}\}}^{(m)}$$

$$These \underbrace{numbers}_{qraphical \ model\ (i.e.\ as\ an\ inference\ step)}$$

Then maximize the log-likelihood while keeping $Q_m(\{Z_i\})$ constant

$$\theta^* = \arg\max_{\theta} \sum_{m} \sum_{\{Z_i\}} p_{\{Z_i\}}^{(m)} \log \frac{P(D_m, \{Z_i\} \mid \theta)}{p_{\{Z_i\}}^{(m)}}$$

$$= \arg\max_{\theta} \sum_{m} \left(\sum_{\{Z_i\}} p_{\{Z_i\}}^{(m)} \log P(D_m, \{Z_i\} \mid \theta) - \sum_{\{Z_i\}} p_{\{Z_i\}}^{(m)} \log p_{\{Z_i\}}^{(m)} \right) \right)$$

$$= \arg\max_{\theta} \sum_{m} \sum_{\{Z_i\}} p_{\{Z_i\}}^{(m)} \log P(D_m, \{Z_i\} \mid \theta)$$

$$= \arg\max_{\theta} \sum_{m} \sum_{\{Z_i\}} p_{\{Z_i\}}^{(m)} \log P(D_m, \{Z_i\} \mid \theta)$$

Expectation-Maximization (EM) Algorithm

Alternate optimization (coordinate ascent)

Log-likelihood function and its estimator:

$$\ell(\theta | D) \ge \sum_{m} \sum_{\{Z_i\}} Q_m(\{Z_i\}) \log \frac{P(D_m, \{Z_i\} | \theta)}{Q_m(\{Z_i\})}$$

Algorithm:

- 1) Assign the θ at random
- 2) (E-step) Compute the probabilities

$$p_{\{Z_i\}}^{(m)} = Q_m(\{Z_i\}) = P(\{Z_i\} | D_m, \theta)$$

3) (*M-step*) Compute a new estimate of θ

$$\theta^* = \arg \max_{\theta} \sum_{m} \sum_{\{Z_i\}} p_{\{Z_i\}}^{(m)} \log P(D_m, \{Z_i\} | \theta)$$

4) Go back to step 2) until some convergence criterion is met

The algorithm converges to a local maximum of the log-likelihood

The effectiveness of algorithm depends on the form of the distribution (see step 3):

$$P(D_m, \{Z_i\} | \theta)$$

In particular, when this distribution is <u>exponential</u>... (e.g. Gaussian – see next slide)

EM Algorithm: mixture of Gaussians

Model:

The hidden variable Z has k possible values, the observable variable X is a point in \mathbb{R}^d

$$P(Z = k) := \phi_k \qquad \qquad \text{Multivariate normal distribution}$$

$$P(X = x \mid Z = k) = N(x; \mu_k, \Sigma_k) := (2\pi)^{-d/2} (\det \Sigma_k)^{-1/2} \exp\left(-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k)\right)$$
 i.e. the condition probabilities are normal distributions

The observations are a set $D = \{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}$ of points in \mathbf{R}^d

Algorithm:

- 1) For each value k, assign ϕ_k , μ_k and Σ_k at random
- 2) (*E-step*) For all the x_i in D compute the probabilities $p_k^{(m)} = P(Z = k \mid x^{(m)}, \phi_k, \mu_k, \Sigma_k) = \phi_k \cdot N(x^{(m)}; \mu_k, \Sigma_k)$
- 3) (*M-step*) Compute the new estimates for the parameters

$$\phi_{k} = \frac{1}{n} \sum_{m} p_{k}^{(m)}$$

$$\mu_{k} = \frac{\sum_{m} p_{k}^{(m)} x^{(m)}}{\sum_{m} p_{k}^{(m)}}$$

$$\Sigma_{k} = \frac{\sum_{m} p_{k}^{(m)} (x - \mu_{k}) (x - \mu_{k})^{T}}{\sum_{m} p_{k}^{(m)}}$$

4) Go back to step 2) until some convergence criterion is met

EM Algorithm: mixture of Gaussians

Model:

The hidden variable Z has k possible values, the variable X is a point in \mathbb{R}^d

$$P(Z=k) := \phi_k$$

$$P(X = x \mid Z = k) = N(x; \mu_k, \Sigma_k) := (2\pi)^{-d/2} (\det \Sigma_k)^{-1/2} \exp\left(-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k)\right)$$

i.e. the condition probabilities are normal distributions

The observations are a set $D = \{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}$ of points in \mathbb{R}^d

Proof (of the M-step):

$$\begin{split} \sum_{m} \sum_{k} p_{k}^{(m)} \log P(X^{(m)}, Z = k \mid \phi_{k}, \mu_{k}, \Sigma_{k}) &= \sum_{m} \sum_{k} p_{k}^{(m)} \log P(X^{(m)} \mid Z = k, \mu_{k}, \Sigma_{k}) P(Z = k \mid \phi_{k}) \\ &= \sum_{m} \sum_{k} p_{k}^{(m)} \left(\log \left(2\pi^{-d/2} \left(\det \Sigma_{k} \right)^{-1/2} \right) + \left(-\frac{1}{2} (x - \mu_{k})^{T} \Sigma_{k}^{-1} (x - \mu_{k}) \right) + \log \phi_{k} \right) \end{split}$$

EM Algorithm: mixture of Gaussians

Model:

The hidden variable Z has k possible values, the variable X is a point in \mathbb{R}^d

$$P(Z=k) := \phi_k$$

$$P(X = x \mid Z = k) = N(x; \mu_k, \Sigma_k) := (2\pi)^{-d/2} (\det \Sigma_k)^{-1/2} \exp\left(-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k)\right)$$

i.e. the condition probabilities are normal distributions

The observations are a set $D = \{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}$ of points in \mathbb{R}^d

Proof (of the M-step):

 $\mu_j = \frac{m}{\sum p_j^{(m)}}$

$$\begin{split} \frac{\partial}{\partial \mu_{j}} \sum_{m} \sum_{k} p_{k}^{(m)} \bigg(\log \Big((2\pi)^{-d/2} (\det \Sigma_{k})^{-1/2} \Big) + \bigg(-\frac{1}{2} (x^{(m)} - \mu_{k})^{T} \Sigma_{k}^{-1} (x^{(m)} - \mu_{k}) \bigg) + \log \phi_{k} \bigg) \\ &= \frac{\partial}{\partial \mu_{j}} \sum_{m} \sum_{k} p_{k}^{(m)} \bigg(-\frac{1}{2} (x^{(m)} - \mu_{k})^{T} \Sigma_{k}^{-1} (x^{(m)} - \mu_{k}) \bigg) \\ &= \frac{\partial}{\partial \mu_{j}} \sum_{m} \sum_{k} p_{k}^{(m)} \bigg(-\frac{1}{2} (x^{(m)^{T}} \Sigma_{k}^{-1} x^{(m)} + \mu_{k}^{T} \Sigma_{k}^{-1} \mu_{k} - 2 + x^{(m)^{T}} \Sigma_{k}^{-1} \mu_{k}) \bigg) \\ &= \sum_{m} p_{j}^{(m)} \Big(x^{T} \Sigma_{j}^{-1} - \mu_{j}^{T} \Sigma_{j}^{-1} \Big) = 0 \end{split}$$

$$\sum_{m} p_{j}^{(m)} x^{(m)} \end{split}$$
By imposing:
$$\sum_{m} p_{j}^{(m)} (x^{T} \Sigma_{j}^{-1} - \mu_{j}^{T} \Sigma_{j}^{-1}) = 0$$

See the link in the web page for the derivations of other parameters ...

Topic modeling

Topic modeling

Classifying a (large) corpus of digital documents relying on word counting only

Multinomial distribution

Bernoulli

Head or Tail?

$$P(X = 1) = \theta$$
, $P(X = 0) = 1 - \theta$

Binomial

n heads out of N coin tosses

$$P(X = n) = {N \choose n} \theta^{n} (1 - \theta)^{(N-n)}$$

Categorical

The result of throwing a dice with k faces

$$P(X = 1) = \theta_1, \quad P(X = k) = \theta_k, \qquad \sum_{i=1}^{k} \theta_i = 1$$

Multinomial

Obtaining an outcome combination x_1, \dots, x_k in N throws of a k –faced dice, with $\sum_{i=1}^{n} x_i = N$

$$P(X_1 = x_1, ..., X_k = x_k) = \frac{N!}{x_1! ... x_k!} \prod_{i=1}^k \theta_i^{x_i}$$

Dirichlet distribution

Beta distribution

What do you think about a coin after obtaining $(\alpha_1 - 1)$ heads and $(\alpha_2 - 1)$ tails?

$$\operatorname{Beta}(x_1, x_2; \alpha_1, \alpha_2) := \frac{x_1^{\alpha_1 - 1} \cdot x_2^{\alpha_2 - 1}}{\operatorname{B}(\alpha_1, \alpha_2)}, \qquad \underbrace{x_1 + x_2 = 1} \qquad \operatorname{Beta}(x; \alpha, \beta) := \frac{x^{\alpha_1 - 1} \cdot x_2^{\alpha_2 - 1}}{\operatorname{B}(\alpha, \beta)}$$

This is just a re-writing of the 'standard' formula:

Beta
$$(x; \alpha, \beta) := \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}$$

Dirichlet distribution

What do you think about a k-faced dice after obtaining $(\alpha_1 - 1), (\alpha_2 - 1) \dots (\alpha_k - 1)$ outcomes?

$$D(x_1,...,x_k;\alpha_1,...,\alpha_k) := \frac{\prod_{i=1}^k x_i^{\alpha_i - 1}}{B(\alpha_1,...,\alpha_k)}, \qquad \sum_{i=1}^k x_i = 1$$

$$\sum_{i=1}^k x_i = 1$$

where $B(\alpha_1,...,\alpha_k) := \frac{\frac{i=1}{k}}{\Gamma\left(\sum_{i=1}^k \alpha_i\right)}$

is the *multivariate Beta function*.

(from Wikipedia)

The Dirichlet distribution is the *conjugate prior* of the Multinomial distribution

Dirichlet distribution

Symmetric Beta distribution

i.e. when
$$\alpha = \beta$$

$$\operatorname{Beta}(x_1, x_2; \alpha) := \frac{x_1^{\alpha - 1} \cdot x_2^{\alpha - 1}}{\operatorname{B}(\alpha, \alpha)}, \qquad x_1 + x_2 = 1$$

Symmetric Dirichlet distribution

i.e. when
$$\alpha_1 = \alpha_2 = \dots = \alpha_k$$

$$D(x_1, \dots, x_k; \alpha) := \frac{\displaystyle\prod_{i=1}^k x_i^{\alpha-1}}{B(\alpha, \dots, \alpha)}, \qquad \sum_{i=1}^k x_i = 1$$

Note: in both distributions, the parameters can be < 1 (this is true of the non-symmetric versions as well)

An aside: plate notation

A shorthand notation for graphical models

An example: Probabilistic Topic Models (Blei & Lafferty, 2009)

Classifying a corpus of documents with k (unknown) topics when the only observable variables is the multiple occurrence of words

A <u>mixture</u> model:

each document belongs to multiple topics, with different probabilities

An example: Probabilistic Topic Models (Blei & Lafferty, 2009)

Classifying a corpus of documents with K (unknown) topics when the only observable variables is the multiple occurrence of words

A <u>mixture</u> model:

each document belongs to multiple topics, with different probabilities

An example: Probabilistic Topic Models (Blei & Lafferty, 2009)

Classifying a corpus of documents as mixtures of K (unknown) topics when the only observable variables is the multiple occurrence of words

A three-level, <u>mixture</u> model:

each document belongs to <u>multiple topics</u>, with different probabilities

$$\prod_{i=1}^{K} p(\beta_{i} | \eta) \prod_{d=1}^{D} p(\theta_{d} | \alpha) \left(\prod_{n=1}^{N} p(z_{d,n} | \theta_{d}) p(w_{d,n} | \beta_{1:K}, z_{d,n}) \right)$$
Symmetric Dirichlet distributions

Multinomial distributions

Latent Dirichlet Allocation (LDA)

Classifying a corpus of documents as mixtures of K (unknown) topics when the only observable variables is the multiple occurrence of words

A three-level, <u>mixture</u> model:

each document belongs to multiple topics, with different probabilities

A *generative* procedure:

- 1 Draw each topic $\beta_i \sim \text{Dir}(\eta)$, for $i \in \{1, ..., K\}$.
- 2 For each document:
 - **1** Draw topic proportions $\theta_d \sim \text{Dir}(\alpha)$.
 - 2 For each word:
 - **1** Draw $Z_{d,n} \sim \text{Mult}(\theta_d)$.
 - 2 Draw $W_{d,n} \sim \text{Mult}(\beta_{Z_{d,n}})$.

LDA: which results?

Identifying topics: relative frequencies of words that define a class

Each box represents a topic
The size of words in a box
represents its relative proportion

1	2	3	4	5
dna	protein	water	says	mantle
gene	cell	climate	researchers	high
sequence	cells	atmospheric	new	earth
genes	proteins	temperature	university	pressure
sequences	receptor	global	just	seismic
human	fig	surface	science	crust
genome	binding	ocean	like	temperature
genetic	activity	carbon	work	earths
analysis	activation	atmosphere	first	lower
two	kinase	changes	years	earthquakes
6	7	8	9	10
end	time	materials	dna	disease
article	data	surface	rna	cancer
start	two	high	transcription	patients
science	model	structure	protein	human
readers	fig	temperature	site	gene
service	system	molecules	binding	medical
news	number	chemical	sequence	studies
card	different	molecular	proteins	drug
circle	ments	fig	specific	normal
letters	89	university	sequences	drugs
11	12	13	14	15
years	species	protein	cells	space
million	evolution	structure	çell	solar
ago	population	proteins	virus	observations
age	evolutionary	two	hiv	earth
university	university	amino	infection	stars
north	populations	binding	immune	university
early	natural	acid	human	mass
fig	studies	residues	antigen	sun
evidence	genetic	molecular	infected	astronomers
record	biology	structural	viral	telescope
16	17	18	19	20
fax	cells	energy	research	neurons
manager	cell	electron	science	brain
science	gene	state	national	cells
aaas	genes	light	scientific	activity
advertising	expression	quantum	scientists	fig
sales	development	physics	new	channels
member	mutant	electrons	states	university
recruitment	mice	high	university	cortex
associate	fig	laser	united	neuronal
washington	biology	magnetic	health	visual

LDA: which results?

Classifying documents: relative topic assignment proportions

Each topic is represented by a list of most relevant words

LDA in practice

There exist multiple methods

Mean-Field Variational Inference (Blei et al. 2003)

(not discussed here – see links to the literature) (It is a sort of generalization of the EM algorithm)

Many software implementations around: e.g. Apache Mahout

Real-world examples

The OCR'ed collection of Science from 1990-2000 [2009]

- 17K documents
- 11M words
- 20K unique terms (stop words and rare words removed)

Model: 100 Topics

The New York Times online recommender system [2015]

See http://open.blogs.nytimes.com/2015/08/11/building-the-next-new-york-times-recommendation-engine/