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Original data Quantization (compression via prototypes)

The basic idea is to replace each real-valued vector x € R® with a discrete symbol
w; € R* which belongs to a codebook of k prototypes 0 := {w1,..., Wy}

Each data vector is encoded by using the index of the most similar prototype, where
similarity is measured in terms, for instance, of Euclidean distance:

w(x) := argmin,,_|x — w;|

For instance, part of mpeg4 and QuickTime (Apple) video compression algorithms work in this way
and so does the Ogg Vorbis audio compression algorithm
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K—11€JNS (Generalized Lloyd’s Algorithm — Vector quantization)

Givenaset D := {xy,...,xx} 0 fobservations (i.e. vectors in R%)
andaset  := {w,...,wi} of k prototypes (i.e. vectors in R%)

Clustering problem: find an assignment function w : R — W

such that the objective (loss) function:
N
1
J(D, 9) = 5 Z ||Xz — fUJ(XZ)HQ
1=1

is minimized.
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K—11€JNS (Generalized Lloyd’s Algorithm - Vector quantization)

k-means algorithm:

1) Position the k prototypes at random
2) Assign each observation to its closest prototype

w(x;) = argmin,,_|x; — w;|

3) Position each prototype at the centroid of the observations assigned to it

1
Wi = o] Z X; where D(w;) :=1{x; € D | w(x;) = w,}
Diw,)l 2,

4) Unless no prototype was moved in step 3), go back to step 2)

This algorithm converges to a local minimum of J(D, 0)
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K—11€JNS (Generalized Lloyd’s Algorithm - Vector quantization)

Why does the algorithm work: alternate optimization (also ‘coordinate descent’)
Step 2): Assign observations while keeping the k prototype fixed

w(x;) := argmin,, [|x; — w|
which minimizes each of the terms in J(D, 0) Z 1x; — w(x;)||”

Step 3): Reposition the k prototypes while keeping the assignments fixed

N
TD.0) =33 ki~ wix)? = 5 37 3 i - wy)

J D(wj)

iJ(D 0) 0 1 Z (Xi—Wj)z & 1 Z (Xz‘_Wj)T(XZ'_Wj)

Ow 8Wj Do) 8w3 Do)
1
= Dy Wi w) = Y (wy - x)
Wi 2 D) D(w;)

then, by imposing J(D,0) =0 we obtain

8Wj

Y

D(w;)

A |D WJ
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K—11€JNS (Generalized Lloyd’s Algorithm - Vector quantization)

Discussion of the k-means algorithm

a) Ateach step of the algorithm J (D, ) cannot increase: only decrease or stay equal

b) The algorithm is a variant of a gradient descent, in which at each step
the gradient descent is performed on one subset of variables only

c) It must reach a fixed point, where both gradients vanish

d) Butthe only guarantee is that the algorithm reaches a local minimum
(unless it gets stuck in a saddle point)
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K—11€JNS (Generalized Lloyd’s Algorithm - Vector quantization)

Givenaset D := {xi,...,xy} of observations (i.e. vectorsinR%)
andaset  := {w,...,wi} of k prototypes (i.e. vectors in R%)
Voronoi cell.

V(w;) == {x € R | ||lx — wj|| < [[x —wi|| .,V I # j}

Voronoi tesselation: the complex of all Voronoi cells of 0

Algorithm (rewritten):
1) Position the k prototypes at random
2) Assign each observation to its Voronoi cell

w(x;) :=w; | x; € V(w,)

3) Position each prototype at the centroid of the observations in its Voronoi cell

1
YT ki e VW)l 2, X

{xi€V(w;)}

4) Unless no prototype was moved in step 3), go back to step 2)
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An example run of the algorithm

The landmarks (empty circles)
become black when
they cease to move

2) 5 Lloyd iterations h) 6 Lloyd iterations i) 7 Lloyd iterations
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Expected value of 3 random variable

(also expectation)

Basic definition
Ex[X]:= ) zP(X =uz)

reX

A linear operator
EX +Y]|=E[X]|+ E[Y]
ElcX] = cE[X]

Conditional expectation

Ex[X]Y =y] =EX]Y =y]:

More concise notation

E[X]:= ) a P(x)
reX
Continuous case
E|X] := f x p(x)dz
reX
= ZxP(Xz:dey)

Iterated expectation (see Wikipedia)

Ex[X] =Ey[Ex[X|Y]]
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Joint Expected Value

The expected value of a function f of a set of random variables{X.} is
E[f{X:})] == ) f{Xi}) PU{X:})
{X: \}
the sum is over all possible combinations of values of the random variables

(Unless specified otherwise, the E operator acts over all the random variables enclosed)

The extension to the continuous case is obvious
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Incomplete observations

Example: ‘Hidden Markov’ model

Terminology:
hidden = latent = always unobserved

a e @ a missing = unobserved (in a data set)
Typically, Z, nodes are hidden,
i.e. non-observables

n

P({Xi}i{zj}) = P(Zl) P(X1 | Zl) H P(Zi |Zi—1) P(Xi |Zi) Joint distribution

= Problem

MLE of parameters 0 starting from partial observations of the {X;} variables only
In other terms, this is the MLE of the likelihood function

L(@|D) = P(D|6)=> P(D.{Z;}|0)

{Z;}

Note that the model (= the probability function) and the (partial) observations are known,
the parameters and the values of some variables are hidden
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Expectation Maximization: a preliminary example

. —_ Figure from
@ Maximum likelihood http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html
|
o HTTTHHTHTH 5H.5T

s 24
@ o HHHHTHHHHH  9HAT %.=55 6080

° HTHHHHHTHH [ 8H2T
Q) HTHTTTHHTT 4H,6T

o THHHTHHHTH 7H, AT
/ 24H,6T 9H, 11T

5 sets, 10 tosses per set

= An experiment with two coins

At each step, one coin is selected at random (with equal probability)

and then tossed ten times
Random variables: X number of heads, Z selected coin (i.e A or B)
Parameters to be learnt: 6 ={6,, 6, } probabilities of landing on head of A and B, resp.
When the results are fully observable, by MLE:

« N « N
QA — NA:I 98 — NB =1
A B
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Expectation Maximization: a preliminary example

. —_ Figure from
a  Maximum likelihood http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html
|
o HTTTHHTHTH 5H.5T

s 24
@ o HHHHTHHHHH  9HAT %.=55 6080

o HTHHHHHTHH [ 8H2T o

b= 045
o HTHTTTHHTT 4H 6T ©° 9+M

o THHHTHHHTH 7H, AT
/ 24H,6T 9H, 11T

5 sets, 10 tosses per set

= An experiment with two coins

At each step, one coin is selected at random (with equal probability)
and then tossed ten times
Random variables: X number of heads, Z selected coin (i.e A or B)
Parameters to be learnt: 6 ={6,, 6, } probabilities of landing on head of A and B, resp.

= Whatif Z is hidden (= latent, = unobserved)?

The results of each sequence of coin tosses are known, but not the coin selected
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Expectation Maximization: a preliminary example

E-step

Coin B

HHHHTHHHHH
9H,1T HTHHHHHTHH
HTHTTTHHTT

4H,6T

24H,6T 9H 11T

Initial random estimate of 8,, 6,

: > 6,"~0.80
()7 i-0s2
Figure from Converged?

http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html
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Expectation Maximization: a preliminary example

E-step

Coin B

HHHHTHHHHH
9H,1T HTHHHHHTHH
HTHTTTHHTT

4H,6T

24H,6T 9H 11T

Initial random estimate of 8,, 6,

~_ 6,"=0.80
Figure from

D o
(4 ) 8,"=0.52

Converged?
http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html

MLE given expected observations
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Expectation Maximization:

P(Z=z| X% =20) =

Compute the probability distribution

a preliminary example

PXW =g |Z=20)P(Z==z]0)

SN.P(XW =g | Z=20)P(Z==z]|0)
where

of hidden observations . 10
xr
Estep P(Z==2]6)=0.
5H, 6T HTTTHHTHTH G.45x° 5_55,{0 =~22H,22T =2.8H,28T
HHHHTHHHHH
9H,1T HTHHHHHTHH D,B{]xo U.EDKO =~72H,08T =1.8H,02T
HTHTTTHHTT
8H, 2T THHHTHHHTH u_?3x° [}.z?xo ~59H, 15T =21H,05T
4H,6T | I .::_35x° ﬂ.ssxo ~14H 21T ~26H,39T
7H,3T 6°=0.60 0.65 x o 0.35x o ~45H 19T  =25H, 11T
24H,6T 9H, 1T 6”=0.50 =213H.86T =11.7H,84T
(1) 21.3 @
Initial random estimate of 6,, 6, 8, = 213+ 86 =0.71
M-step
g 117 6"~
O =117 +84 " 08 0.80
@"" 6,"=0.52
Figure from Converged?

http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html
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Expectation Maximization: a preliminary example

x)

Use expected observations
instead of actual observations to update ML estimations

Ezlz| X% = x,0] =Z$P(Z=z|X(i) =x,0)==x

HTTTHHTHTH

gH, 1T

HHHHTHHHHH
HTHHHHHTHH

8H 2T

HTHTTTHHTT

THHHTHHHTH

7H, 3T

00000
00000

6"=0.60

24H,6T

Initial random estimate of 8,, 6,

Figure from
http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html

9H, 11T

=273+86 071

8 117 +84

= 0.58

MLE using expected observations

~22H, 22T ~28H,28T
~7.2H,08T ~18H.02T
=59H 15T =21H,05T
~14H, 21T ~26H,39T
~45H 19T ~25H, 11T
=213H.86T =117H,84T
M-step
= (10)
| _6,7~0.80
/é;””mﬂsz
Converged?
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An aside: Jensen’s inequality

A relationship between probability and geometry y

f(x) is (strictly) convex
P1=[Xy, f(xp)]
| P1+A(Ps — P1)

When f is convex function
f(E[{X}]) < E[f({X;}]

f is convex when for any two points p; and p;
the segment (p; — p;) is not below f

P2=[X,, f(X5)]
| P3=[X3, f(X

That is, when i i : |
M) +A-2)F(x) 2 fAx+@-2)x;,) Viel[ol] X X X3 X4
Furthermore, f is strictly convex when
) +@A=A)F(x;) > F(Ax+0-24)x;) VA1e(0))

Y
Vv

Corollary:
when f is strictly convex, if and only if all the variables in {X,} are constant
it is true that

F(ERX}]) = E[T({X;})]

Dual results also hold for concave functions
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An aside: Jensen’s inequality

A relationship between probability and geometry y

When f is convex function
f(E[{X: 3D < E[f({X;P]

To see this, consider

P =A1py+ A5p, + AgPg + APy
i.e. a linear combination of p; points

f(x) is (strictly) convex

P1

This is an affine combination if > 4, =1
and it is a convex combination if also 4 >0, Vi

3
A Xyt AoXy + AgXs + A%,

When the 4; define a probability, then p is a convex combination of p; points

Any convex combination of p; points lies inside their convex hull (see figure)

and therefore above f :

Zﬂ’i f(x) 2 f(zﬁ’ixi)

Corollary: the only way to make the convex hull be on f
is to shrink it to a single point (i.e. the Jensen’s corollary)
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Incomplete observations

Likelihood function with hidden random variables
L(@|D) = P(D|O) = [ P(D, |6)

/(0|D) = > logP(D, |6)= > log> P(D,.{Z;}16,)

m {z}
Arbitrary probability distributions

P(D. {Z}|6
- Ylog Y Q,(z ) 220t
/ Jensen’s inequality: log is concave

mo{Z) {Z})
P(D, {Z}0 PO, 12,310
- Zm“log EQm({zi}){ (Q:(‘Ezii)l )} > Zm:Equzi}){'Og (Qméz; )}

P(D,.{Z}|0)
_ 7 4] m i
Zm:{;}Qm({ }) log 0. UZ})
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Expectation- Maximization (EM) Algorithm

Alternate optimization (coordinate ascent)
Log-likelihood function:
P(D,.{Z:}|9)
/(@|D) > Q.{zMlo m’ 27
O1B) > 22D =0 )
|

Keep 0 constant, define Q_({Z,}) so that the right side of the inequality is maximized

P(D,{Z3}|6) _ P(D,{Z}|6)

{Zi}

This inequality becomes equality ' when this term is constant (see Jensen’s corollary)

Qm ({ZI}) =

= P({Z;}ID,.0) = pg,

These numbers can be computed from the
graphical model (i.e. as an inference step)

Then maximize the log-likelihood while keeping Q,,({Z,}) constant

. P(D_.{Z }| 6
0 =argmax, Z Z p{(rzn,)} log (O fm)'}l ) This is also called the entropy of Q,({Z;})
m {Z;} I:){Zi} ‘ (i.e. a constant measure of the distribution)
= arg max,, Z(Z Py log P(D,.{Z}16) - > pi7) log p{(?i’}j
m \{Z;} {z;}

=argmax, » > p;}logP(D, .{Z}|6)
m {Z;}
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Expectation- Maximization (EM) Algorithm

Alternate optimization (coordinate ascent)
Log-likelihood function and its estimator:

/(0| D) = ;{ZZ}Qm({Zi}) log P(gm&gﬁ)le)

Algorithm:
1) Assign the 6 at random

2) (E-step) Compute the probabilities
Py = Qu({Z}) = PHZ}ID,.0)

3) (M-step) Compute a new estimate of 6

6" =argmax, > > p;3log P(D,.{Z;}|6)
m {Z;}

4) Go back to step 2) until some convergence criterion is met

The algorithm converges to a local maximum of the log-likelihood
The effectiveness of algorithm depends on the form of the distribution (see step3):

P(D,.{Z;}|0)

In particular, when this distribution is exponential... (e.g. Gaussian — see next slide)
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EM Algorithm: mixture of Gaussians

Model:

The hidden variable Z has k possible values, the observable variable X is a pointin RY
P(Z =k)=¢, Multivariate normal distribution

P(X =x|Z =K)=N(X g 2) = (272')_0”2 (detzk)_ll2 eXp(_%(X _/uk)T 2;1()(_ ,Uk)j
i.e. the condition probabilities are normal distributions

The observations are a set D= {xM x@ . . xMW} of pointsin RY
Algorithm:
1) Foreach valuek, assign ¢, , u, and 2, at random

2) (E-step) Forall the x; in D compute the probabilities
pém) = P(Z =k]| X(m)'¢k7:uk’zk) = ¢ N(X(m);:uk'zk)
3) (M-step) Compute the new estimates for the parameters

1 m
¢k = HZ pIE :
Z plgm)x(m) Z pém)(x_ﬂk)(x_ﬂk)T

e SINC 2= (m)
; pk Zm: pk

4) Go back to step 2) until some convergence criterion is met

Artificial Intelligence 2016-2017
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EM Algorithm: mixture of Gaussians

Model:
The hidden variable Z has k possible values, the variable X is a pointin R
P(Z =k) = ¢,

P(X =x|Z =K)=N(X g 2) = (272')_0”2 (det Zk)_l/2 eXp(_ 1 (x— /uk)T 2;1()( - :uk)j
i.e. the condition probabilities are normal distributions 2
The observations are a set D= {xMx®@, ...  x™} of pointsin R?
Proof (of the M-step):

ZZ pém) Iog P(X(m)’z :k|¢k’1uk’2k)zzz pém) Iog P(X(m) |Z :k’ﬂwzk)P(Z :k|¢k)
m k m k

- Z Z pém)(log@”—d/z(det Zk)_llz)"' (_%(X — My )! 2;1()( - ﬂk)j + |09¢kj
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EM Algorithm: mixture of Gaussians

Model:
The hidden variable Z has k possible values, the variable X is a pointin R4
P(Z =k) = ¢,

P(X =x|Z =K)=N(X g 2) = (272')_0”2 (det 2k)_l/2 eXp(_ 1 (x— :uk)T 2;1()( - ,Uk)j
i.e. the condition probabilities are normal distributions 2
The observations are a set D= {x®x®@, ..., x™} of points in R?
Proof (of the M-step):

Y Z Z p(m)(mg ((272')_0”2 (det zk)_ll2 )+ (_ % (X(m) — My )! Zil(x(m) - ﬂk)j + Iog¢kj

m 1 m - m
8/1 ZZ p( ) E(X( )_ﬂk)Tzkl(X( )_/uk)J
J m
m 1 mT -1y, (m - m) T «— m _
@u ZZ p( ) _(X( ) Zklx( )"‘ﬂ;zklﬂk_z"'x( ) Zkltuk j Z p( )( szl)
J m

By imposing: Z p(m)(x 2 y}2}1)= 0
Z p(m)x(m)
Hi = Z p™

See the link in the web page for the derivations of other parameters ...
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Topic modeling

Topic modeling

Classifying a (large) corpus of digital documents LEREE |
relying on word counting only RIS " Canaoa et

Topic proportions and

Topics Documents assignments

Per-topic gene g-g‘;
word genetic 061 Seeking Life’s Bare (Genetic) Necessities
proportions s COLD SPRING HARBOR, NEW YORK— “are ot all thar far apart,” especially in

How many genes does an [SEERRSm negd v comparison to the 73,000 senes m the hu
survive! Last week at the cenome mecting : <

here, " two genome researchers wich radically
different approaches presented complemen
- fordiier

rer analy numbers =

(on a shared
lexicon)

Py

dne, mores =iy Anderssor T

tary views of the basic senes nee
Chne research ream, using com
ses o compare known g

s, concluded  more genomes are o

that towday " SOREIAEIS  in be sostained with sequenced. “It may be a way of organiet
just 130 senes, and that the earliest life forms any newly sequenced senome,” explains
:L"||||r.-.| a mene 128 genes. The ——— Arcady Mushegian, a computational mo
ather researcher mapped genes 27 T leeular Biologist at the Nat
in o simple parnsite and esti- /0 % for Biotechoology Infonmation T
mated that for this organism, W."" L in Bethesda, Marvland. Comyg Per'document
800 genes are plenty todo the | 1T e .
Symmetric prb—bur thar anyehing short "\ proportlons
D' . hl t uf lL"i?ll-\uvu!lJl;'[ b e |L;'_:].|l. 0 &
Iricnle Although the number: don' 1! i
d. t b ti match precisely, those predictions d Symmetrlc
420 guman g .
Istribution - : "/ : Per-word assignments Dirichlet
enome Mapping and Saequenc- — . . .
ing, Cold Spring Harbor, Mew York, Stripping down. Compuier analysis yields an esti- Z dISlTIbul'Ion
May & to 12, mate af the minimuem modermn and ancent genomes, d.n

SCIENCE » VOL 172 ¢ 24 MAY 1996

) N

—

Multinomial
distribution
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Multinomial distribution

= Bernoulli
Head or Tail?

P(X=1)=60, P(X=0)=1-0

= Binomial
n heads out of N coin tosses

N _
P(X =n)= ( ] }9“(1—49)<N "

= Categorical

The result of throwing a dice with k faces

P(X =1)=6,, P(X=k)=4,, zklei =1

* Multinomial
Obtaining an outcome combination X, ..., X, inN throws of a k-faced dice, with in =N

H 0 i=1

Xk i=1

P(X, =X, X, =X) =

Artificial Intelligence 2016-2017 Unsupervised Learning [27]



Dirichlet distribution

= Beta distribution
What do you think about a coin after obtaining (c:; — 1) heads and (., — 1) tails?

Xal_l Xaz_l P This is just a re-writing of the ‘standard’ formula:
* a-1 p-1
Beta(x,, X,; 0y, a,) = — ‘, X, +X, =1 Beta(x;a, f) = 0 =%
11 A2 Y1 9 1 2
B(ey,@,) B(a, )

= Dirichlet distribution

What do you think about a k-faced dice after
obtaining (a; — 1), (@, — 1) ... (o, — 1) outcomes?

D(X[yeees X3 gy @) = :

where k

B(ay,...,,) = =

. . . . examples of Dirichlet distxributions, fork=3
is the multivariate Beta function. (from Wikipedia)

The Dirichlet distribution is the conjugate prior of the Multinomial distribution
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Dirichlet distribution

= Symmetric Beta distribution

i.e.when a=J

a-1 a-1

X' X
Beta(x,,X,;a) = ——2—, X, +X, =1
(X, X,; ) B(a,a) 17T Xy
= Symmetric Dirichlet distribution
ie.when a;= a,=... =a )
[1x~ k
D(X.,-, X ) = —= : x =1
(X, ) B(a....a) |Z=1:

Note: in both distributions, the parameters can be < 1
(this is true of the non-symmetric versions as well)

PDF

Beta(x,X,;10) Beta(X;,X,;1)

Beta(xy,X,;0.1)
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An 3side: plate notation

A shorthand notation for graphical models

|
O
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An example: Probabilistic Topic Models e & 1afrery, 2009

Classifying a corpus of documents with k (unknown) topics
when the only observable variables is the multiple occurrence of words

A mixture model:
each document belongs to multiple topics, with different probabilities

Per-word

Dirichlet . .
toplc assignment
parameter
Per-document Observed Topic
topic proportions word Topics  hyperparameter

RN
OHO- OO

“ O N /6k' 7]
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An example: Probabilistic Topic Models e & 1afrery, 2009

Classifying a corpus of documents with K (unknown) topics
when the only observable variables is the multiple occurrence of words

A mixture model:
each document belongs to multiple topics, with different probabilities

Per-word

Dirichlet . .
toplc assignment
parameter
Per-document Observed Topic
topic proportions word Topics  hyperparameter

hyperparameter

N

N N T
OCr OO
P l

04 W By
- \ M| \x
\ N\

/
04 € [0, 1] pereach topic  Z,, € {1, ... k} (topics) Wy, € V (lexicon) By € [0, 1] per each topic
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An example: Probabilistic Topic Models e & 1afrery, 2009

Classifying a corpus of documents as mixtures of K (unknown) topics
when the only observable variables is the multiple occurrence of words

A three-level, mixture model:
each document belongs to multiple topics, with different probabilities

otoFo-e—HIo-+o
o Oa Zin Wan N B 7
D K

]_[p(ﬁfm)]_[p (6g]t) (]_[p(zdn| O)p(Wain | B K,zdn))
P [

Symmetric Dirichlet distributions Multinomial distributions
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Lstent Dirichlet Allocation (LDA)

Classifying a corpus of documents as mixtures of K (unknown) topics
when the only observable variables is the multiple occurrence of words

A three-level, mixture model:
each document belongs to multiple topics, with different probabilities

OO10O—@ OO
| ba | Zan Wan (] B |
D K

A generative procedure:
© Draw each topic g; ~ Dir(y), fori € {1, ..., K}.
® For each document:

© Draw topic proportions 4 ~ Dir(a).

® For each word:

© Draw Zy , ~ Mult(0y).
® Draw Wy n ~ Mult(fz, ).
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L DA: which results?

|dentifying topics:
relative frequencies
of words that define a class

Each box represents a topic

The size of words in a box
represents its relative proportion

1 2 3 4 5
dana protein water says mantle
ene cell climate researchers high
sefjuence cells atmospheric new earth
genes proteins temperature university pressure
sequences receptor global just seismic
human fig surface science crust
genome binding ocean like temperature
genetic activity carbon work earths
analysis activation atmosphere first lower
two kinase changes years earthquakes
6 7 8 9 10
end time materials U na disease
article data surface ma cancer
start fwo high transcription patients
science madel structure protein human
readers g temperaurs site gene
service = melecuses binding medical
news i chamical sequence studies
card e molecular proteins drug
circle — g specific nomal
letters - ey seguences drugs
11 12 13 14 15
years Specles protein cells space
million evolution structure cell solar
ago population proteins virus observations
age evolutionary two hiv earth
university university amino infection stars
north populations binding immune university
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L DA: which results?

Classifying documents: relative topic assignment proportions
Each topic is represented by a list of most relevant words

1 2 3

research.reasoning.grant science. supported —
genetic.search optimization evolutionary function —
belief. model.theory distribution.markov —
models.networks bayesian data hidden -
learning.search.crossover.algorthm.complexity —
design.logic.search.learmning.systems —
learning.networks_neural system.reinforcement -
planning.visual.model. memory.system

network time.networks algorithm.data -

decision learning tree trees_classification -

-. — —
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genetic.search optimization evolutionary function —
belief. model.theory distribution.markov —
models.networks bayesian data hidden -
learning.search crossover algorithm. complexity —

design.logic.search.learmning.systems —
learning.networks_neural system.reinforcement -
planning.visual.model. memory.system
network time.networks algorithm.data -

decision learning tree trees_classification -

proportion

0.0 puyem—

0.4 -
0.6
0.8
1.0 1
0.0
0.2

0.6
0.8
1.0 1

0.4

document

L=l == I = N =

—
[=]

Artificial Intelligence 2016-2017

Unsupervised Learning [36]



LDA in practice

There exist multiple methods

Mean-Field Variational Inference (Blei et al. 2003)

(not discussed here — see links to the literature)
(It is a sort of generalization of the EM algorithm)

Many software implementations around: e.g. Apache Mahout

Real-world examples
The OCR'ed collection of Science from 1990-2000 [2009]
* 17Kdocuments
 11Mwords
* 20K unique terms (stop words and rare words removed)
Model: 100 Topics

The New York Times online recommender system [2015]

See http://open.blogs.nytimes.com/2015/08/11/building-the-next-new-york-times-recommendation-engine/
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