Artificial Intelligence

Probabilistic reasoning: representation \& inference

Marco Piastra

Probability: events as subsets of possible worlds

- Boolean algebra

A non-empty collection of subsets Σ of a set W such that:

1) $A, B \in \Sigma \Longrightarrow A \cup B \in \Sigma$
2) $A \in \Sigma \Longrightarrow A^{c} \in \Sigma$
3) $\varnothing \in \Sigma$

Corollary:
The sets \varnothing e W belong to any Boolean algebra generated on W
Σ is also closed under intersection

- σ-algebra

A non-empty collection of subsets Σ of a set W such that:

1) $A_{k} \in \Sigma, \forall k \in \mathbb{N}^{+} \Longrightarrow\left(\bigcup_{k=1}^{\infty} A_{k}\right) \in \Sigma \longleftarrow$ This is a stronger requirement:
2) $A \in \Sigma \Longrightarrow A^{c} \in \Sigma \quad$ closeness under countable union Hence a σ-algebra is a boolean algebra but not vice-versa
3) $\varnothing \in \Sigma$

Corollary:
The sets \varnothing e W belong to any σ - algebra generated on W
Σ is also closed under countable intersection

Probability: events as subsets of possible worlds

- σ-algebra (definition)

A non-empty collection of subsets Σ of a set W such that:

1) $A_{k} \in \Sigma, \forall k \in \mathbb{N}^{+} \Longrightarrow\left(\bigcup_{k=1}^{\infty} A_{k}\right) \in \Sigma$
2) $A \in \Sigma \Longrightarrow A^{c} \in \Sigma$
3) $\varnothing \in \Sigma$

- Probability measure over a σ-algebra

A function $P: \Sigma \rightarrow[0,1]$
i.e. P assigns a measure (i.e. a real number) to each elements of a σ-algebra Σ of subsets of W

1) $\forall A \in \Sigma, P(A) \geq 0$
2) $A_{k} \in \Sigma, \forall k \in \mathbb{N}^{+}$are disjoint $\Longrightarrow P\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} P\left(A_{k}\right)$
3) $P(\varnothing)=0$
4) $P\left(A^{c}\right)=1-P(A)$ (which implies $\left.P(W)=1\right)$

- Probability space

A triple $\langle W, \Sigma, P\rangle$

Probability: events as subsets of possible worlds

- σ-algebra
- Probability measure over a σ-algebra
- Probability space

A triple $\langle W, \Sigma, P\rangle$

Why bothering so much with these (very) technical definitions?

- Rationale (just a few hints)

Closure w.r.t. countable unions of a σ-algebras
(as well as countable additivity of P)
is required for dealing with infinite sequences of events and their properties
However, the properties about countable union and additivity are also restrictions, to ensure measurability
(see the so-called Banach-Tarski paradox for counterexamples)

Probability: events as subsets of possible worlds

- Probability measure over a σ-algebra
- Disjoint events

In general

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

If $A \cap B=\varnothing \quad$ then events A and B are disjoint

$$
P(A \cup B)=P(A)+P(B)
$$

(*) Note that $A \cap B=\varnothing \Longrightarrow P(A \cap B)=0$
but not vice-versa: as an event can have zero probability without being empty
${ }^{(* *)}$ Unlike in propositional logic, knowing $P(A)$ and $P(B)$ is not sufficient for determining $P(A \cup B)$
Namely, probability is not truth-functional ...

Studying basic properties: a finitary setting

It can be useful to adopt, at least for a while, a simpler setting that allows a simpler definition of fundamental properties

- Finite algebra of events
Σ is a finite collection of subsets
In this setting, boolean algebra $=\sigma$-algebra
Events could also be defined via propositional logic
(à la de Finetti, 1937)
- Finitely additive probability measure

Just summations, no integrals
Computability is always guaranteed

Partitions, random variables*

- Partition

A finite collection A_{i} of disjoint subsets (i.e. events) such that

$$
\bigcup_{i} P\left(A_{i}\right)=W
$$

A σ-algebra can be generated from a partition by adding the empty set \varnothing and all the unions of two or more subsets (i.e. events) in the partition

- Random Variable

Let X be a variable having a finite set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ as its domain.
In each possible world, X has a specific value v_{i}
The set of values $X=v_{1}, X=v_{2}, \ldots, X=v_{n}$ defines a partition of W

- X is a random variable
- Each constraint $X=v_{i}$ defines an event (i.e. a subset of W)
- Given that $X=v_{i}$ e $X=v_{j}$ are disjoint, $P\left(X=v_{i} \vee X=v_{j}\right)=P\left(X=v_{i}\right)+P\left(X=v_{j}\right)$ whenever $i \neq j$

Random variable having binary values are also said to be Bernoullian
Random variables with vectorial values are also said to be multinomial

Random variables, joint distribution*

- Multiple random variables

In practice, in a probabilistic representation, multiple random variables can coexist
Example:
X_{i} occurrence of a word I in the body of an email (0/1)
Y classification of that email as spam (0/1)
Together, a collection of random variable defines
a partition of W
The intersection of two or more σ-algebras is a σ-algebra

- Joint probability distribution

for a given set of random variables, e.g. X, Y, Z
It is a function $P(X=x, Y=y, Z=z)$ that associates a value in [0, 1]
to each individual combination of values $\langle x, y, z\rangle$

Given that X, Y e Z define a partition of W :

$$
\sum_{x} \sum_{y} \sum_{z} P(X=x, Y=y, Z=z)=1
$$

Random variables: notation

- Random variables, events and σ-algebras
(sometimes the notation can be ambiguous)
Examples:
$P(X)$
This is the probability measure over the σ-algebra generated by random variable X

$$
P(X=x)
$$

This the probability (i.e. a value in $[0,1]$) associated to the event $X=x$

$$
P(X, Y=y)
$$

This is the probability measure over the σ-algebra generated by random variable X in the subspace of W corresponding to the event $Y=y$

Marginalization

Removing a random variable from a joint distribution
Given a joint probability distribution

$$
P(X=x, Y=y, Z=z)
$$

The marginal probability $P(X=x, Y=y)$ is obtained via summation:

$$
P(X=x, Y=y)=\sum_{z} P(X=x, Y=y, Z=z)
$$

A marginal probability, in general, is still a joint probability

Conditional probability

- Definition

$$
P(X \mid Y=y)=\frac{P(X, Y=y)}{P(Y=y)}
$$

It is a form of inference: from a set W to a set W^{\prime}
Therefore, from a probability space to another probability space

Example: W is the set of possible worlds, X, Y are bernoullian random variables and $P(X, Y)$ is the joint probability distribution
Suppose the agent learns that event $Y=1$ has occurred:
the event $Y=0$ is now impossible (to him/her)
$W^{\prime} \equiv Y=1$ is the new set of possible worlds
$P(X \mid Y=1)$ is the new probability of X

More in general

$$
P(X \mid Y)=\frac{P(X, Y)}{P(Y)}
$$

Denotes the conditional probabilities for the whole σ-algebra of events generated by Y

Bayes' Theorem (т. Bayes, 1764)

- Definition

A relation between conditional and marginal probabilities

$$
P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
$$

$P(Y \mid X)$ is also called likelihood $L(X \mid Y)$

$$
P(X \mid Y) \propto L(X \mid Y) P(X)
$$

The theorem follows from the definition of conditional probability (chain rule)

$$
P(X, Y)=P(Y \mid X) P(X)
$$

Given the definition of marginalization:

$$
P(Y)=\sum_{X} P(X, Y)=\sum_{X} P(Y \mid X) P(X) \longleftarrow \quad \text { Also called } \quad \text { 'law of total probability' }
$$

follows an alternative formulation of the Bayes' theorem:

$$
P(X \mid Y)=\frac{P(Y \mid X) P(X)}{\sum_{X} P(Y \mid X) P(X)}
$$

Example: information and bets

- Two envelopes, only one is extracted

One envelope contains two red tokens and two black tokens, it is worth \$1.00 One envelope contains one red token and two black tokens, it is valueless

The envelope has been extracted.
Before posing you bet, you are allowed to extract on token from it
a) The token is black. How much do you bet ?
b) The token is red. How much do you bet ?

Purpose: showing that Bayes' Theorem makes the representation easier

Independence, conditional independence

- Independence (also marginal independence)

Two events are independent iff their joint probability is equal to the product of the marginals

$$
\begin{aligned}
\langle X \perp Y\rangle & \Rightarrow P(X, Y)=P(X) P(Y) \\
& \Rightarrow P(X \mid Y)=\frac{P(X, Y)}{P(Y)}=\frac{P(X) P(Y)}{P(Y)}=P(X)
\end{aligned}
$$

- Conditional independence

Two events are conditional independent, given a third event, iff their joint conditional probability is equal to the product of the conditional marginals

$$
\begin{aligned}
& \langle X \perp Y| Z>P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z) \\
& \quad \Rightarrow P(X \mid Y, Z)=\frac{P(X, Y \mid Z)}{P(Y \mid Z)}=\frac{P(X \mid Z) P(Y \mid Z)}{P(Y \mid Z)}=P(X \mid Z)
\end{aligned}
$$

CAUTION: the two forms of independence are distinct!

$$
\langle X \perp Y\rangle \nRightarrow\langle X \perp Y \mid Z\rangle,\langle X \perp Y \mid Z\rangle \nRightarrow\langle X \perp Y\rangle
$$

Independence, conditional independence

These are two examples illustrating conditional independence. Each cell represents a possible outcome. The events R, B and Y are represented by the areas shaded red, blue and yellow respectively. And the probabilities of these events are shaded areas with respect to the total area. In both examples R and B are conditionally independent given Y because:
$\operatorname{Pr}(R \cap B \mid Y)=\operatorname{Pr}(R \mid Y) \operatorname{Pr}(B \mid Y)^{[1]}$
but not conditionally independent given not Y because $\operatorname{Pr}(R \cap B \mid$ not $Y) \neq \operatorname{Pr}(R \mid$ not $Y) \operatorname{Pr}(B \mid$ not $Y)$.

CAUTION: in the example above: independence on one event generated by Y does NOT imply independence on the whole σ-algebra of events generated by Y
Unless stated otherwise, independence is assumed to be on the whole σ-algebra generated by the conditioning random variables

Probabilistic Inference

- General setting

The starting point is a fully-specified joint probability distribution

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

In an inference problem, the set of random variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is divided into three categories:

1) Observed variables $\left\{X_{o}\right\}$, i.e. having a definite (and certain) value
2) Irrelevant variables $\left\{X_{i}\right\}$, i.e. which are not directly part of the answer
3) Relevant variables $\left\{X_{r}\right\}$, i.e. which are part of the answer we seek

In general, the problem is finding:

$$
P\left(\left\{X_{r}\right\} \mid\left\{X_{o}\right\}\right)=\sum_{\left\{X_{i}\right\}} P\left(\left\{X_{r}\right\},\left\{X_{i}\right\} \mid\left\{X_{o}\right\}\right)
$$

- "Decidability" (actually "computability") is not an issue (*in a finitary setting)

Given that the joint probability distribution is completely specified

- Computational efficiency can be a problem

The number of value combinations grows exponentially
with the number of random variables

Continuous random variables (hint)

Although conceptually the same, dealing with continuous random variable is technically difficult
Consider a continuous random variable $X \in \mathcal{X} \longleftarrow{ }_{\text {A }}^{\text {A.g.thereal interval }[0,1]}$ $X=x$ does not describe an event

It is not a subset, it always has (probability) measure zero

$$
X \leq a \quad X \leq b \quad a<X \leq b
$$

describe subsets hence events ($a<b$ is assumed here)

$$
P(X \leq b)=P(X \leq a)+P(a<X \leq b)
$$

since the two events on the left hand side are disjoint

$$
P(a<X \leq b)=P(X \leq b)-P(X \leq a)
$$

Assuming that the derivative $p(X):=\frac{d P(X)}{d X}$ exists
cumulative distribution function (cdf)
$P(a<X \leq b)=\int_{a}^{b} p(X) d X$

Expected value of a random variable

(also expectation)

Basic definition

$$
\mathbb{E}_{X}[X]:=\sum_{x \in \mathcal{X}} x P(X=x)
$$

More concise notation

$$
\mathbb{E}[X]:=\sum_{x \in \mathcal{X}} x P(x)
$$

Continuous case

$$
\mathbb{E}[X]:=\int_{x \in \mathcal{X}} x P(x) d x
$$

$$
\begin{aligned}
& \mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] \\
& \mathbb{E}[c X]=c \mathbb{E}[X]
\end{aligned}
$$

Conditional expectation

$$
\mathbb{E}_{X}[X \mid Y=y]=\mathbb{E}[X \mid Y=y]:=\sum_{x \in \mathcal{X}} x P(X=x \mid Y=y)
$$

Iterated expectation (see Wikipedia)

$$
\mathbb{E}_{X}[X]=\mathbb{E}_{Y}\left[\mathbb{E}_{X}[X \mid Y]\right]
$$

Variance of a random variable

Basic definition

$$
\begin{aligned}
& \operatorname{Var}(X):=\mathbb{E}_{X}\left[\left(X-\mathbb{E}_{X}[X]\right)^{2}\right]=\mathbb{E}_{X}\left[\left(X-\mu_{X}\right)^{2}\right] \\
& \text { where } \mu_{X}:=\mathbb{E}_{X}[X]
\end{aligned}
$$

$$
\operatorname{Var}(X):=\sum_{x \in \mathcal{X}} P(X=x)(x-\mu)^{2}
$$

variance is not a linear operator
Conditional variance

$$
\operatorname{Var}(X \mid Y=y):=\mathbb{E}_{X}\left[\left(X-\mathbb{E}_{X}[X \mid Y=y]\right)^{2} \mid Y=y\right]
$$

Variance lemma

$$
\left.\begin{array}{l}
\begin{array}{rl}
\operatorname{Var}(X) & =\mathbb{E}\left[\left(X-\mu_{X}\right)^{2}\right]=\mathbb{E}\left[X^{2}\right]-2 \mu_{X} \mathbb{E}[X]+\mu_{X}^{2} \\
& =\mathbb{E}\left[X^{2}\right]-2 \mu_{X}^{2}+\mu_{X}^{2}=\mathbb{E}\left[X^{2}\right]-\mu_{X}^{2}
\end{array} \\
\mathbb{E}\left[X^{2}\right]=\mu_{X}^{2}+\sigma_{X}^{2}
\end{array}\right\}
$$

