Artificial Intelligence

Entailment and Algorithms

Marco Piastra

Decisions and decidability (automation)

■ What is a *problem*?

A problem is an association, i.e. a relation between inputs and outputs (i.e. solutions)

$$K: \langle I, S \rangle$$

Search problem

Typically, K associates one input to many solutions

Optimization problems

A search problem plus an objective or cost function

 $c: S \to \mathbb{R}$ (i.e. from S to the set of real numbers)

In general, the task is finding the solution(s) having maximal or minimal cost

Decision problem

The solution space S is $\{0, 1\}$ and K associates each input to a <u>unique</u> solution: $K: I \rightarrow \{0, 1\}$

Example: $\Gamma \models \varphi$?

The input space I contains all possible combinations of set Γ of wffs with individual wffs φ . The solution is uniquely defined for any instance of such problems in I

Decisions and decidability (automation)

Decidable problem

A decision problem K which there exists an algorithm, more precisely a *Turing machine* (there are other ways of defining an algorithm or an *effective procedure*: they are all equivalent) that *always terminates* and produces the right answer in *finite time*.

Example of an undecidable problem: The Halting Problem

Given the formal description of a particular Turing machine with a specific input, is it possible to tell if whether it will eventually halt or run forever?

In other words, does it exist a Turing machine that, given in input the description of *another* Turing machine, will always produce the answer desired?

The answer is **no** (such a Turing machine *cannot* exist)

An aside: The Halting Problem

■ Intuitive ideas behind the proof (i.e. of the *undecidability* of this problem)

Let's assume there exists a Turing machine H that, given the description of a Turing machine M with input I always terminates producing an output "halt" or "loop" depending on whether M with input I will terminate or not

An aside: The Halting Problem

■ Intuitive ideas behind the proof (i.e. of the *undecidability* of this problem)

Let's assume there exists a Turing machine H that, given the description of a Turing machine M with input I always terminates producing an output "halt" or "loop" depending on whether M with input I will terminate or not

Assume H existed

We could build another Turing machine K that enters an infinite loop whenever the output of H is "halt" and that terminates, with output "halt", when H outputs "loop"

An aside: The Halting Problem

■ Intuitive ideas behind the proof (i.e. of the *undecidability* of this problem)

Let's assume there exists a Turing machine H that, given the description of a Turing machine M with input I always terminates producing an output "halt" or "loop" depending on whether M with input I will terminate or not

Assume H existed

We could build another Turing machine K that enters an infinite loop whenever the output of H is "halt" and that terminates, with output "halt", when H outputs "loop"

What will be the output of K when given K *itself* as the input? K should *diverge* when K *terminates* and vice-versa: i.e. we have an absurdity

Transforming problems: entailment as satisfiability

■ The decision problem " $\Gamma \models \varphi$? " can be transformed into a *satisfiability* problem

In fact, $\Gamma \models \varphi$ iff $\Gamma \cup \{\neg \varphi\}$ is *not* satisfiable

$$(w(\Gamma) \text{ is the set of possible worlds that satisfy } \Gamma)$$

$$\Gamma \models \varphi \implies w(\Gamma) \subseteq w(\{\varphi\}) \qquad \qquad \mathbf{0} \subseteq \{\mathbf{0}, \mathbf{2}\}$$

$$w(\{\neg \varphi\}) = \mathbf{0}$$

$$w(\Gamma \cup \{\neg \varphi\}) = w(\Gamma) \cap w(\{\neg \varphi\})$$

$$w(\Gamma \cup \{\neg \varphi\}) = \emptyset \qquad \qquad \mathbf{0} \cap \mathbf{0} = \emptyset$$

Transforming problems: entailment as satisfiability

■ The decision problem " $\Gamma \models \varphi$? " can be transformed into a *satisfiability* problem

In fact, $\Gamma \models \varphi$ iff $\Gamma \cup \{\neg \varphi\}$ is *not* satisfiable

 $(w(\Gamma) \text{ is the set of possible worlds that satisfy } \Gamma)$ $\Gamma \models \varphi \implies w(\Gamma) \subseteq w(\{\varphi\}) \qquad \bullet \subseteq \{\bullet, \bullet\}$

$$\Gamma \models \varphi \Rightarrow w(\Gamma) \subseteq w(\{\varphi\})$$

$$w(\{\neg \varphi\}) = \mathbf{0}$$

$$w(\Gamma \cup \{\neg \varphi\}) = w(\Gamma) \cap w(\{\neg \varphi\})$$

$$w(\Gamma \cup \{\neg \varphi\}) = \emptyset$$

$$\mathbf{0} \subseteq \{\mathbf{0}, \mathbf{2}\}$$

$$w(\{\neg \varphi\}) = \mathbf{0}$$

■ The decision problem "is $\Gamma \cup \{\neg \varphi\}$ satisfiable?" can be transformed into a wff *satisfiability* problem

Taking this one step further, we can transform $\Gamma \cup \{\neg \varphi\}$ into *just one formula*:

$$\Lambda (\Gamma \cup \{\neg \varphi\})$$

This is the wff obtained by combing all the wffs in $\Gamma \cup \{\neg \varphi\}$ with Λ , it is called the *conjunctive closure* of the set $\Gamma \cup \{\neg \varphi\}$

Satisfiability and decidability (in L_P)

• Is the decision problem "is the wff φ satisfiable?" <u>decidable</u>?

It can be transformed into a *search* problem

i.e. finding a possible world (in the set of all possible worlds) that satisfies φ In the scientific literature, this problem is called "SAT"

Intuition: we can try every possible value assignment for the atoms in φ

Satisfiability and decidability (in L_P)

• Is the decision problem "is the wff φ satisfiable?" <u>decidable</u>?

It can be transformed into a search problem

i.e. finding a possible world (in the set of all possible worlds) that satisfies φ In the scientific literature, this problem is called "SAT"

Intuition: we can try every possible value assignment for the atoms in φ Example:

This method $O(2^n)$ time complexity, due to the number of value assignments

Satisfiability and decidability (in L_P)

Example:

$$\neg (B \land D \land \neg (A \land C))$$
 which is equivalent to $(\neg B \lor \neg D \lor (A \land C))$

Each branch in the tree represents a possible assignment:

The same algorithm is forced to try all possible assignments when ψ is *not* satisfiable.

For instance: $(\neg B \land \neg D \land \neg A \land \neg C)$

Computational complexity, classes P and NP

These notions apply to <u>decidable problems</u> only

It is based on the performances of a (known) Turing machine that gives the answer with respect to the *worst case* (i.e. the less favorable input for the specific problem)

Time complexity

The number of <u>steps</u> that the Turing machine requires for computing the answer, as a function of some numerical dimension of the input (e.g. the number of atoms in a wff)

Memory complexity

The number of tape <u>cells</u> that the Turing machine requires for computing the answer, as a function of some numerical dimension of the input

Class P

The class of problems for which there is a Turing machine that requires O(P(n)) time where P() is a polynomial of finite degree and n is the dimension of the (worst-case) input

Class NP

The class of all problems:

- a) A method for *enumerating* all possible answers (i.e. *recursive enumerability*)
- b) An algorithm in class P that <u>verifies</u> if a possible answer is also a <u>solution</u> It includes all problems in class P (that is, $P \subseteq NP$)

Class NP-complete and the SAT problem

Class NP-complete

It is a subclass of NP (NP-complete \subseteq NP)

A problem *K* is NP-complete if every problem in class NP is <u>reducible</u> to *K*

Reducibility

For class NP-complete

Consider a problem K for which a decision algorithm M(K) is known

A problem J is <u>reducible</u> to K if there exist a decision algorithm M(J) such that:

- a) algorithm M(K) is called just once, as a "subroutine", at the end of M(J)
- b) apart from M(K), M(J) has polynomial complexity

The problem SAT

Is NP-complete (historically, it is the first one to be known)

Moral: if we had a polynomial decision algorithm for SAT, we would also have that

P = NP

This fact is not known, it is believed that: $P \neq NP$ (and a lot will change in the digital world, if this proves to be <u>false</u>)

Semantic Tableau, alpha and beta rules

- Semantic tableau is a method
 which can be implemented as a Turing machine
- It is a decision algorithm for the problem "is Σ satisfiable?"

where Σ is a set of wffs in L_P

In spite of its name, it is a *symbolic* method: it works on the structure of wffs only No explicit assignments of (semantic) values are involved

Semantic Tableau, alpha and beta rules

lacksquare A tableau is a set of wffs in L_P

The method starts from an *initial* tableau

(i.e. the set Σ whose satisfiability is to be determined)

It is based on rules that transform each one wff into two wffs

Alpha rules (i.e. expansion)

(a1) (a2) (a3) (a4)
$$\neg (\neg \varphi) \qquad \varphi \wedge \psi \qquad \neg (\varphi \vee \psi) \qquad \neg (\varphi \rightarrow \psi)$$

$$\begin{matrix} \downarrow & & \downarrow & & \downarrow \\ \varphi & & \varphi, \psi & \neg \varphi, \neg \psi & \varphi, \neg \psi \end{matrix}$$

Beta rules (i.e. bifurcation)

Semantic Tableau - a working example

- Original problem: " $\Gamma \models \varphi$?" Example input: $A \rightarrow (B \rightarrow C) \models B \rightarrow (A \rightarrow C)$?
- Transformed problem: "is $\Gamma \cup \{\neg \varphi\}$ satisfiable?" Hence the initial tableau is $\Gamma \cup \{\neg \varphi\}$

Semantic Tableau - a working example

- Original problem: " $\Gamma \models \varphi$?" Example input: $A \rightarrow (B \rightarrow C) \models B \rightarrow (A \rightarrow C)$?
- Transformed problem: "is $\Gamma \cup \{\neg \varphi\}$ satisfiable?" Hence the initial tableau is $\Gamma \cup \{\neg \varphi\}$

The usual notation in textbooks is even more concise: only those wffs that are added to the initial tableau in each branch are shown in the tree

Semantic Tableau - algorithm recap

Algorithm (informal description – see Lab for the implementation):

Input problem: " $\Gamma \models \varphi$?"

The input problem is transformed into "is $\Gamma \cup \{\neg \varphi\}$ satisfiable?"

Methods of this type are also called 'by refutation'

For each active tableau (i.e. the *leaves* in the tree),

There could be two cases:

- The tableau contains only literals
 If the tableau contains a complementary pair of literals
 then declare it closed
 else declare it open (i.e. failure)
- 2) The tableau contains one or more *composite* wff First try to apply an *alpha* rule, otherwise, if this is not possible, try to apply a *beta* rule. In either case, two new tableau will be generated

Output: the tree structure of tableau

Semantic Tableau - (required) algorithm properties

Termination

The algorithm never diverges (i.e. it never enters an infinite loop)

Each application of either alpha or beta rule *simplifies* a wff (i.e. it makes it *less* composite): so the application of rules cannot continue forever

Symbolic derivation

As already stated, in spite of its name, this is a symbolic method

We write

$$\Gamma \vdash_{ST} \varphi$$

iff the Semantic Tableau method is successful (i.e. all leaves are closed) for $\Gamma \cup \{\neg \varphi\}$

How do we know that
$$\Gamma \vdash_{ST} \varphi \Rightarrow \Gamma \models \varphi$$
?

(Soundness - also correctness - of the method)

Exercise: prove it

(hint: consider the condition on $\Gamma \cup \{\neg \varphi\}$ and think about how it relates to each rule)

How do we know that
$$\Gamma \models \varphi \Rightarrow \Gamma \vdash_{ST} \varphi$$
?

(Completeness of the method)

Proving it is definitely more difficult: see textbook (i.e. Ben-Ari)

Semantic Tableau - (required) algorithm properties

Termination

The algorithm never diverges (i.e. it never enters an infinite loop)

Each application of either alpha or beta rule *simplifies* a wff (i.e. it makes it *less* composite): so the application of rules cannot continue forever

Soundness

$$\Gamma \vdash_{ST} \varphi \Rightarrow \Gamma \models \varphi$$

Completeness

$$\Gamma \models \varphi \Rightarrow \Gamma \vdash_{ST} \varphi$$

 Termination + Soundness + Completeness = Decision Algorithm (for propositional logic)

Which method is faster?

■ Time complexity (remember: consider the *worst case*)

The `brute-force search' and Semantic Tableau have the same complexity : $O(2^n)$

How well do these method perform in practice?

It depends

Example 1(try it):

$$A \wedge B \wedge C \wedge \neg A$$

The `brute-force search' requires $2^3 = 8$ attempts

The Semantic Tableau method requires applying the same alpha rule 3 times

Example 2 (try it):

$$(A \lor B) \land (A \lor \neg B) \land (\neg A \lor B) \land (\neg A \lor \neg B)$$

The `brute-force search' requires $2^2 = 4$ attempts

The Semantic Tableau method requires applying the same alpha rule 3 times; then the same beta rule is applied exhaustively producing a tree with 4 levels, with each node in a tree with a branching factor 2

At the end, the tree has $2^4=16$ leaves (all *closed* tableau)