Artificial Intelligence

Horn Clauses and SLD Resolution

Marco Piastra

Horn Clauses (in L_P)

Definition

A *Horn Clause* is a wff in CF that contains at most <u>one</u> literal in positive form

Three types of Horn Clauses:

Rule: two or more literals, one positive

Examples: $\{B, \neg D, \neg A, \neg C\}, \{A, \neg B\}$ (equivalent to: $(D \land A \land C) \rightarrow B, B \rightarrow A$)

Facts: just one positive literal

Examples: $\{B\}$, $\{A\}$

Goal: one or more literals, all negative

Examples: $\{\neg B\}, \{\neg A, \neg B\}$

More terminology:

Rules and facts are also called definite clauses

Goals are allo called *negative clauses*

Lost in Translation...

Many wffs can be translated into Horn clauses:

$(A \land B) \rightarrow C$	
$\neg (A \land B) \lor C$	$(rewriting \rightarrow)$
$\neg A \lor \neg B \lor C$	(De Morgan - CF – it is a rule)
$A \to (B \land C)$	
$\neg A \lor (B \land C)$	$(rewriting \rightarrow)$
$(\neg A \lor B) \land (\neg A \lor C)$	(distributing V)
$(\neg A \lor B), (\neg A \lor C)$	(CF – <u>two</u> rules)
$(A \lor B) \to C$	
$\neg (A \lor B) \lor C$	$(rewriting \rightarrow)$
$(\neg A \land \neg B) \lor C$	(De Morgan)
$(\neg A \lor C) \land (\neg B \lor C)$	(distributing V)
$(\neg A \lor C), (\neg B \lor C)$	(CF – <u>two</u> rules)

But not all of them:

$$(A \land \neg B) \rightarrow C$$

 $\neg (A \land \neg B) \lor C$
 $\neg A \lor B \lor C$
 $A \rightarrow (B \lor C)$
 $\neg A \lor B \lor C$
 $(rewriting \rightarrow)$

SLD Resolution (in L_P)

Linear resolution with Selection function for Definite clauses

Algorithm

Starts from a set of definite clauses (also the program) + a goal

- 1) At each step, the selection function identifies a literal in the goal (i.e. subgoal)
- 2) All definite clause applicable to the subgoal is selected
- 3) The resolution rule is applied generating the resolvent

Termination: either the empty clause { } is obtained or step 2) fails.

Example:

Selection function: leftmost subgoal first Definite clauses: $\{C\}$, $\{D\}$, $\{B, \neg D\}$, $\{A, \neg B, \neg C\}$ Goal: $\{\neg A\}$

SLD trees (in L_P)

SLD derivations

Example: $\{C\}$, $\{D\}$, $\{B, \neg D\}$, $\{A, \neg B, \neg C\}$ goal $\{\neg A\}$ In this example each subgoal can be resolved in one mode only This is not true in general

SLD trees (= trace of all SLD derivations from a goal)

Example:
$$\{C\}$$
, $\{D\}$, $\{B, \neg F\}$, $\{B, \neg E\}$, $\{B, \neg D\}$, $\{A, \neg B, \neg C\}$ goal $\{\neg A\}$ A few new rules have been added: there are now different possibilities

$$\{ \neg A \}$$
 Selection function: leftmost subgoal first $\{ \neg B, \neg C \}$ $\{ \neg F, \neg C \}$ $\{ \neg E, \neg C \}$ $\{ \neg D, \neg C \}$ $\{ \neg C \}$

Each branch correspond to a possible resolution for a *subgoal*

SLD Resolution (in L_P)

• A resolution method for Horn clauses in L_P

It always terminates

It is *correct*: $\Gamma \vdash \varphi \Rightarrow \Gamma \models \varphi$

It is *complete*: $\Gamma \models \varphi \Rightarrow \Gamma \vdash \varphi$

Computationally efficient

It has polynomial time complexity (w.r.t the # of propositional symbols occurring in Γ and φ)

Limitations

Not all problems can be translated into Horn clauses

The "Harry is happy" problem does not translate

 Γ : only a set of *rules* and *facts*

arphi : only a conjunction of *facts*

Horn Clauses in L_{FO}

The definition is very similar to the propositional case

Horn Clauses (of the skolemization of a set sentences)

Each clause contains at most one literal in positive form

```
Facts, rules and goals
  Fact: a clause with just an individual atom
                    \{Human(socrates)\}, \{Pyramid(x)\}, \{Sister(sally, motherOf(paul))\}\}
  Rule: a clause with at least two literals, exactly one in positive form
                    \{Human(x), \neg Philosopher(x)\},\
                    \forall x (Philospher(x) \rightarrow Human(x))
                    \{\neg Female(x), \neg Parent(k(x), x), \neg Parent(k(y), y), Sister(x, y)\}
                    \forall x \forall y ((Female(x) \land \exists z (Parent(z,x) \land Parent(z,y))) \rightarrow Sister(x,y))
                    \{\neg Above(x,y), On(x,k(x))\}, \{\neg Above(x,y), On(j(y),y)\}
                    \forall x \forall y \ (Above(x,y) \rightarrow (\exists z \ On(x,z) \land \exists v \ On(v,y)))
  Goal: a clause containing negative literals only
                    \{\neg Human(socrates)\}
                    \{\neg Sister(sally,x), \neg Sister(x,paul)\}
                    Negation of \exists x (Sorella(sally,x) \land Sorella(x,paul))
```

SLD Resolution in L_{FO}

■ Input: a program Π and a goal ϕ

Program Π (i.e. a set of *definite clauses*: rules + facts) in some predefined linear order:

$$\gamma_1, \gamma_2, \dots, \gamma_n$$
 (each γ_i is a definite clause)

 $\mathsf{Goal}\,\phi$ (i.e. a conjunction of facts in negated form), which becomes the current $\mathsf{goal}\,\psi$

Note: the *selection function* for the *current goal* and *subgoal* will be discussed in the next slide

Procedure:

- 1) Select a negative literal $\neg \alpha$ (i.e. the subgoal) in the current goal ψ
- 2) Scan the program (in the predefined order) to identify a clause candidate literal γ_i
- 3) Try unifying $\neg \alpha$ and $std(\alpha')$ (i.e. apply the standardization of variables to α')
- 4) If there is a *unifier* σ of $\neg \alpha$ and $std(\alpha')$, replace the current goal with the *resolvent* of $std(\gamma_i)[\sigma]$ and $\psi[\sigma]$ (i.e. first apply σ to both $std(\gamma_i)$ and ψ and then generate the resolvent)
- 5) Then, if the *resolvent* is the empty clause, terminate with <u>success</u>, otherwise select a new *current goal* and resume from step 1)
- 6) Else, if the unification fails , scan the program and select a new candidate literal γ_i and resume from step 3)
- 7) Else, if there are no further clauses in the program, select a new *current goal* and resume from step 1)
- 8) If all the goals in the tree have been fully explored, terminate with failure

SLD Resolution in L_{FO}

■ Two alternative selection functions:

Depth-first (which is the most common...)

- Always select the most recent goal, i.e. the resolvent which has been generated last, as the current goal ϕ
- Then, in the current goal ϕ , select the leftmost subgoal $\neg \alpha$ not selected yet
- When the current goal ϕ is fully explored and no new resolvent has been generated, select the next most recent goal in the tree (backtracking)

Breadth-first

- Always select the <u>least</u> recent goal as the current goal ϕ
- Then, in the current goal ϕ , select the leftmost subgoal $\neg \alpha$ not selected yet
- When the current goal ϕ is fully explored select the next *least recent* goal in the tree

Comparison

Breadth-first is a *fair* selection function, in the sense that every possible resolution will be eventually attempted (i.e. 'it leaves nothing behind').

Depth-first tends to save memory and be more efficient, but it is NOT fair (more to follow)

SLD Trees

Example (depth-first selection function): $\Pi \equiv \{ \{Human(x), \neg Philosopher(x) \}, \{Mortal(y), \neg Human(y) \}, \}$ {Philosopher(socrates)}, {Philosopher(plato)}, {Philosopher(aristotle)}} $goal \equiv \{\neg Mortal(x), \neg Human(x)\}\$ "Is there anyone who is both human and mortal?" 1: $\{\neg Mortal(x)\}$ [] $\{\neg Mortal(x)\}, \{Mortal(y_1), \neg Human(y_1),\}$ [] 2: $\{\neg Human(y_1)\}\ [x/y_1]$ $\{\neg Human(y_1)\}, \{Human(x_1), \neg Philosopher(x_1)\} [x/y_1]$ 3: $\{\neg Philosopher(x_1)\}\ [x/y_1][y_1/x_1]$ $\{\neg Philosopher(x_1)\}\ \{Philosopher(socrates)\}\ [x/y_1][y_1/x_1]$ 4: {} $[x/y_1][y_1/x_1][x_1/socrates]$

SLD Trees

Example (depth-first selection function, forcing full exploration of SLD tree): $\Pi \equiv \{ \{Human(x), \neg Philosopher(x)\}, \{Mortal(y), \neg Human(y)\}, \}$ {*Philosopher*(socrates)}, {*Philosopher*(plato)}, {*Philosopher*(aristotle)}} $goal \equiv \{\neg Mortal(x), \neg Human(x)\}\$ "Is there anyone who is both human and mortal?" 1: $\{\neg Mortal(x)\}$ [] $\{\neg Mortal(x)\}, \{Mortal(y_1), \neg Human(y_1),\}$ [] 2: $\{\neg Human(y_1)\}\ [x/y_1]$ $\{\neg Human(y_1)\}, \{Human(x_1), \neg Philosopher(x_1)\} [x/y_1]$ 3:_{ $\neg Philosopher(x_1)$ } [x/y_1][y_1/x_1] $\{\neg Philosopher(x_1)\}\ \{Philosopher(socrates)\}\ [x/y_1][y_1/x_1]$ $\{\neg Philosopher(x_1)\}\ \{Philosopher(plato)\}\ [x/y_1][y_1/x_1]$ $\{\neg Philosopher(x_1)\}\ \{Philosopher(x_1)\}\ \{Philosopher(x_1)\}\$ $\left\{ \begin{array}{c|c} & \left\{ \begin{array}{c} \neg Philosopher(x_1) \right\} \left\{ Philosopher(aristotle) \right\} \left[x/y_1 \right] \left[y_1/x_1 \right] \\ 4 : \left\{ \left\{ \left[x/y_1 \right] \left[y_1/x_1 \right] \left[x_1/socrates \right] \right. \right. \right. \\ 5 : \left\{ \left\{ \left[x/y_1 \right] \left[y_1/x_1 \right] \left[x_1/plato \right] \right. \right. \right. \right. \\ 6 : \left\{ \left\{ \left[x/y_1 \right] \left[y_1/x_1 \right] \left[x_1/aristotle \right] \right. \right\} \right\} \\ \left\{ \left\{ \left[x/y_1 \right] \left[y_1/x_1 \right] \left[x_1/aristotle \right] \right\} \right\} \\ \left\{ \left\{ \left[x/y_1 \right] \left[x_1/aristotle \right] \right\} \right\} \\ \left\{ \left[x/y_1 \right] \left[x_1/aristotle \right] \right\} \\ \left\{ \left[x/y_1 \right] \left[x_1/aristotle \right] \right\} \\ \left\{ \left[x/y_1 \right] \left[x_1/aristotle \right] \right\} \\ \left\{ \left[x/y_1 \right] \left[x_1/aristotle \right] \right\} \\ \left\{ \left[x/y_1 \right] \left[x_1/aristotle \right] \right\} \\ \left\{ \left[x/y_1 \right] \left[x_1/aristotle \right] \right\} \\ \left\{ \left[x/y_1 \right] \left[x_1/aristotle \right] \right\} \\ \left\{ \left[x/y_1 \right] \left[x_1/aristotle \right] \right\} \\ \left\{ \left[x/y_1 \right] \left[x_1/aristotle \right] \right\} \\ \left\{ \left[x/y_1 \right] \left[x_1/aristotle \right] \right\} \\ \left[x/y_1 \right] \left[x_1/aristotle \right] \\ \left[x/x_1 \right] \left[x/x_1 \right] \\ \left[x/x_1 \right] \left[x/x_1 \right] \\ \left[x/x_1$

SLD Trees

■ Another example (depth-first selection function): $\Pi \equiv \{\{Mortal(felix), \neg Cat(felix)\}, \{Human(x), \neg Philosopher(x)\}, \{Mortal(y), \neg Human(y)\}, \{Philosopher(socrates)\}, \{Philosopher(plato)\}, \{Philosopher(aristotle)\}\}$ $goal \equiv \{\neg Mortal(x), \neg Human(x)\}$ "Is there anyone who is both human and mortal?"

The world of lists

• Lists of items [a, b, c, ...]

```
cons/2
it's \ a \ function \ that \ associates \ items \ (e.g. \ a) \ to \ a \ list \ (e.g. \ [b, \ c])
cons(a,cons(b,cons(c,nil))) is the list [a,b,c]
Append/3
it's \ a \ predicate: each pair of lists x and y is associated to their concatenation \ z
nil
it's \ a \ constant, the empty \ list.

Shorthand notation (Prolog): [] \Leftrightarrow nil
[a] \Leftrightarrow cons(a,nil)
[a,b] \Leftrightarrow cons(a,cons(b,nil))
[a/[b,c]] \Leftrightarrow cons(a,[b,c])
```

```
Axioms (AL)
\forall x \, Append(nil,x,x)
\forall x \, \forall y \, \forall z \, (Append(x,y,z) \rightarrow \forall s \, Append([s,x],y,[s,z]))
```

The world of lists

```
Problem: \forall x \ Append(nil, x, x) \models \exists y \ \forall x \ Append(nil, cons(y, x), cons(a, x))
  1: \forall x \, Append(nil, x, x), \, \neg \exists y \, \forall x \, Append(nil, cons(y, x), cons(a, x)) (refutation)
  2: \forall x \ Append(nil, x, x), \ \forall y \ \exists x \ \neg Append(nil, cons(y, x), cons(a, x)) (prenex normal form)
  3: \{Append(nil, x, x)\}, \{\neg Append(nil, cons(y, k(y)), cons(a, k(y)))\}
                                           (k/1) is a Skolem function, clausal form)
                             (N.B. there is no skolemization in Prolog: the programmer does it)
The pair of literals
  Append(nil, x, x), \neg Append(nil, cons(y, k(y)), cons(a, k(y))))
... contains the same predicate Append/3 but the arguments are different
There is however an MGU \sigma = [x/cons(a, k(a)), y/a] that yields
  \{Append(nil, cons(a,k(a)), cons(a,k(a)))\}, \{\neg Append(nil, cons(a,k(a)), cons(a,k(a)))\}\}
From this, the resolvent is the empty clause.
```

The world of lists in Prolog

```
% Identical to built-in predicate append/3, although it uses "cons"
% as a defined predicate, thus allowing trace-ability.

append(cons(S,X),Y,cons(S,Z)) :- append(X,Y,Z).

append(nil,X,X).

% WARNING: express your queries with cons. Examples:
% ?- append(cons(a,nil), cons(b,cons(c, nil)),cons(a,cons(b,cons(c, nil)))).
% ?- append(X,Y,cons(a,cons(b,cons(c, nil)))).
```

Infinite SLD Trees (fairness of SLD)

A first example:

$$\Pi \equiv \{ \{ P(x), \neg P(x) \} \}$$
$$\neg \phi \equiv \{ \neg P(x) \}$$

goal:
$$\neg P(x)$$
 []
$$\{\neg P(x)\}, \{P(x_1), \neg P(x_1), \}$$
 []
$$\{\neg P(x_1)\}, [x/x_1]$$

$$\{\neg P(x_1)\}, \{P(x_2), \neg P(x_2), \} [x/x_1]$$

$$\{\neg P(x_2)\}, [x/x_1], [x_1/x_2]$$

Since $\Pi \not\models \phi$, the method can *diverge* (and it does...)

Infinite SLD Trees (fairness of SLD)

A second example:

$$\Pi \equiv \{ \{ P(x), \neg P(x) \}, \{ P(a) \} \}$$
$$\neg \phi \equiv \{ \neg P(x) \}$$

goal:
$$\neg P(x)$$
 [] $\{\neg P(x)\}, \{P(x_1), \neg P(x_1), \}$ [] $\{\neg P(x)\}, \{P(a)\} [x/a]$ $\{\neg P(x_1)\} [x/x_1]$ $\{\} [x/a]$ $\{\neg P(x_1)\}, \{P(x_2), \neg P(x_2), \} [x/x_1]$ $\{\neg P(x_2)\} [x/x_1] [x_1/x_2]$

In this case $\Pi \models \phi$, so the method should *not* diverge.

However, when a *depth-first* selection function is used, the infinite branch in the SLD-tree makes the method diverge anyway.

A <u>fair</u> selection function is such that no possible resolution will be postponed indefinitely: that is, <u>any</u> possible resolution will be performed, eventually.