Artificial Intelligence

Horn Clauses
and SLD Resolution

Marco Piastra

Artificial Intelligence 2015-2016 SLD Resolution [1]

Horn Clauses (in L;)

= Definition

A Horn Clause is a wff in CF
that contains at most one literal in positive form

Three types of Horn Clauses:
Rule: two or more literals, one positive
Examples: {B, =D, —=A, =C}, {A, =B} (equivalentto: (D AAAC)—>B, B—>A)
Facts: just one positive literal
Examples: {B}, {A}

Goal: one or more literals, all negative
Examples: {—B}, {—A, =B}

More terminology:
Rules and facts are also called definite clauses
Goals are allo called negative clauses

Artificial Intelligence 2015-2016 SLD Resolution [2]

Lost in Translation...

Many wffs can be translated into Horn clauses:

(AANB)—>C
~(AAB)VC
—AV - BvC
A—>(BAC
—~AV (B A C)
(=A V B) A (-A v C)
(=A V B), (A Vv C)
(AvB)>C
~(AVB)VC
(A A =B) VvV C
(FAVC)A(—B VOO
(=A Vv C), (=B v C)
But not all of them:
(AN —-B)>C
~(AA -B)VC
—AVBVC

A— (B vV C
—AVBVC

(rewriting —)
(De Morgan - CF —itiis a rule)

(rewriting —)
(distributing V)
(CF - two rules)

rewriting —)
De Morgan)
distributing V)
CF - two rules)

(
(
(
(

(rewriting —)
(De Morgan)

(rewriting —)

Artificial Intelligence 2015-2016

SLD Resolution [3]

SLD Resolution (in Ly)

Linear resolution with Selection function for Definite clauses

= Algorithm

Starts from a set of definite clauses (also the program) + a goal

1) At each step, the selection function identifies a literal in the goal (i.e. subgoal)

2) All definite clause applicable to the subgoal is selected
3) The resolution rule is applied generating the resolvent
Termination: either the empty clause { } is obtained or step 2) fails.

{
{
Example:
Selection function: leftmost subgoal first {
Definite clauses: {C}, {D}, {B, =D}, {A, —=B, =C}
Goal: {—=A}
{
{

—|A}
~_{A -B,—C}
-B, —=C}
~{B,~D}
-D, =C}

~1b}

— {c}

Artificial Intelligence 2015-2016

SLD Resolution [4]

SLD trees (in Ly)

SLD derivations {—A}

Example: {C}, {D}, {B, =D}, {A, =B, =C} goal {—A} é’ {-B, =C}
In this example each subgoal can be resolved in one mode only S |
This is not true in general § {—D, -C}
{0
|
{}

= SLD trees (= trace of all SLD derivations from a goal)
Example: {C}, {D}, {B, —F}, {B, —E}, {B, =D}, {A, =B, =C} goal {—A}

A few new rules have been added: there are now different possibilities

{—-A} Selection function:

| leftmost subgoal first
{-B, =C}

|
{—-F, -C} {—E, -C} {-D, =C}

| | |

X X {-C}

|
{}

Each branch correspond to a possible resolution for a subgoal

Artificial Intelligence 2015-2016 SLD Resolution [5]

SLD Resolution (in Lp)

= Aresolution method for Horn clauses in Ly

It always terminates
Itiscorrect: T ¢ = T'Eg
ItiscompleteT'Ep = 'l

= Computationally efficient

It has polynomial time complexity (w.r.t the # of propositional symbols occurring in T and ¢)

= | imitations

Not all problems can be translated into Horn clauses
The “Harry is happy” problem does not translate
I' : only a set of rules and facts
¢ : only a conjunction of facts

Artificial Intelligence 2015-2016 SLD Resolution [6]

Horn Clauses in Lgg

The definition is very similar to the propositional case

* Horn Clauses (of the skolemization of a set sentences)
Each clause contains at most one literal in positive form

Facts, rules and goals

Fact: a clause with just an individual atom
{Human(socrates)}, {Pyramid(x)}, {Sister(sally, motherOf(paul))}
Rule: a clause with at least two literals, exactly one in positive form
{Human(x), —Philosopher(x)},
Vx (Philospher(x) — Human(x))
{—Female(x), —=Parent(k(x),x), —Parent(k(y),y), Sister(x,y)}
VxVy ((Female(x) A 3z (Parent(z,x) A Parent(z,y))) — Sister(x,y))

{—Above(x,y), On(xk(x))}, {=Above(xy), On(j(y).y)}
VxVy (Above(x,y) — (dz On(x,z) A v On(v,y)))

Goal: a clause containing negative literals only
{—Human(socrates)}

{—Sister(sally,x), —Sister(x,paul)}
Negation of dx (Sorella(sally,x) A Sorella(x,paul))

Artificial Intelligence 2015-2016

SLD Resolution [7]

SLD Resolution in Lg,
* |[nput: a program IT and a goal ¢

Program I (i.e. a set of definite clauses: rules + facts) in some predefined linear order:

V1:Y21 o1 ¥n (each y; is a definite clause)

Goal ¢ (i.e. a conjunction of facts in negated form), which becomes the current goal v

Note: the selection function for the current goal and subgoal
will be discussed in the next slide

Procedure:
1) Select a negative literal —« (ie.the subgoal) in the current goal vy
) Scan the program (in the predefined order) to identify a clause candidate literal y,
3) Try unifying —a and std(a’) (i.e. apply the standardization of variables to ')
)

If there is a unifier o of =« and std(a), replace the current goal with the resolvent of
Std(yi)[O'] and y[o] (ie.firstapply o to both std(y;) and ¢ and then generate the resolvent)

N

5) Then, if the resolvent is the empty clause, terminate with success, otherwise select a
new current goal and resume from step 1)

6) Else, if the unification fails, scan the program and select a new candidate literal y; and
resume from step 3)

7) Else, if there are no further clauses in the program, select a new current goal and
resume from step 1)

8) If all the goals in the tree have been fully explored, terminate with failure
Artificial Intelligence 2015-2016 SLD Resolution [8]

SLD Resolution in Lg,

= Two alternative selection functions:

Depth-first (which is the most common...)

= Always select the most recent goal, i.e. the resolvent which has been generated last, as
the current goal ¢

= Then, in the current goal ¢, select the leftmost subgoal —a not selected yet

= When the current goal ¢ is fully explored and no new resolvent has been generated,
select the next most recent goal in the tree (backtracking)

Breadth-first
= Always select the least recent goal as the current goal ¢
= Then, in the current goal ¢, select the leftmost subgoal —a not selected yet
= When the current goal ¢ is fully explored select the next least recent goal in the tree

Comparison

Breadth-first is a fair selection function, in the sense that every possible resolution will be eventually
attempted (i.e. ‘it leaves nothing behind’).

Depth-first tends to save memory and be more efficient, but it is NOT fair (more to follow)

Artificial Intelligence 2015-2016 SLD Resolution [9]

SLD Trees

= Example (depth-first selection function):

IT = {{Human(x), —Philosopher(x)}, {Mortal(y), =Human(y)},
{Philosopher(socrates)}, {Philosopher(plato)}, {Philosopher(aristotle)}}

goal = {—Mortal(x), =Human(x)}
“Is there anyone who is both human and mortal?”

1 {ﬂMolrtaI(x)} [
{—Mortal(x)}, {Mortal(y,), =Human(y,),} ||
I

2: {_'Humaln(Y1)} [x/y,]
{—Human(y,)}, {Humangxl), —Philosopher(x,)} [x/y,]

3: {—Philosopher(x,)} [x/y I[y,/x]
S
{—Philosopher(x,)} {Philosopher(socrates)} [x/v,|[y./x]

4: {3 Xy Qly./X1[x,/socrates]

Artificial Intelligence 2015-2016 SLD Resolution [10]

SLD Trees

. Example (depth-first selection function, forcing full exploration of SLD tree):

IT = {{Human(x), —Philosopher(x)}, {Mortal(y), =Human(y)},
{Philosopher(socrates)}, {Philosopher(plato)}, {Philosopher(aristotle)}}

goal = {—Mortal(x), =Human(x)}
“Is there anyone who is both human and mortal?”

1 {ﬂMolrtaI(x)} [
{—Mortal(x)}, {Mortal(y,), =Human(y,),} ||
I

2: {_'Humaln(Y1)} [x/y,]
{—Human(y,)}, {Humangxl), —Philosopher(x,)} [x/y,]

3: {—Philosopher(x,)} /vy I[y,/x]
S
{—Philosopher(x,)} {Philosopher(socrates)} [x/v,|[y./x]

{—Philosopher(x,)} {Philosopher(plato)} [x/y,|[y,/x,]
{—Philosopher(x,)} {Philosoprer(aristotle)} [X1y,] [y/%4]

4: {3 Xy Iy /x1[x,/socrates] 5: {F Xty 1y /X 1[x,/plato] 6: {} Xy 1ly./x.1[x,/aristotle]

Artificial Intelligence 2015-2016 SLD Resolution [11]

SLD Trees

= Another example (depth-first selection function):

IT = {{Mortal(felix), —Cat(felix)}, {Human(x), —Philosopher(x)}, {Mortal(y), =Human(y)},
{Philosopher(socrates)}, {Philosopher(plato)}, {Philosopher(aristotle)}}
goal = {—Mortal(x), =Human(x)}
“Is there anyone who is both human and mortal?”

1 {ﬂMoqtaI(x)} [
{—Mortal(x)}, {Mortall(felix), —Cat(felix)} [| {—Mortal(x)}, {Mortal(y,), =Human(y,).} ||
I

2: =Cat(felix) [x/felix] 3 {~ HumaT(yl)} [X/y,]
|

goal 2: cannot be resolved {—Human(y,)}, {Humangxl), —Philosopher(x,)} [x/y,]

4: {—Philosopher(x,)} Dy, 1[v./x]
|

{—Philosopher(x,)} {Philosopher(socrates)} [x/y,|[y,/x,]

{3} Xy dly./x.1[x,/socrates]

Artificial Intelligence 2015-2016 SLD Resolution [12]

The world of lists

= Lists ofitems [a, b, C, ...]

cons/2
it’s a function that associates items (e.g. a) to a list (e.g. [b, c])
cons(a,cons(b,cons(c,nil))) is the list [a, b,]

Append/3
it’s a predicate: each pair of lists X and y is associated to their concatenation z

nil
it’s a constant, the empty list.

Shorthand notation (Prolog): [] < nil
[a] < cons(a,nil)
[a,b] < cons(a,cons(b,nil))
[a][b,c]] < cons(a,[b,c])

Axioms (AL)

Vx Append(nil,x,x)
VxVyVz (Append(x,y,z) — Vs Append([s,x].y.[s,z])

Artificial Intelligence 2015-2016 SLD Resolution [13]

The world of lists

Problem: ¥x Append(nil, x, x) | 3y ¥x Append(nil, cons(y, X), cons(a, X))

1: ¥x Append(nil, x, x), =3y Vx Append(nil, cons(y, x), cons(a, X)) (refutation)
2: Vx Append(nil, x, x), Yy 3x —Append(nil, cons(y, X), cons(a, X)) (prenex normal form)

3: {Append(nil, x, x)}, {—Append(nil, cons(y, k(y)), cons(a, k(y)))}

(k/1 is a Skolem function, clausal form)
(N.B. there is no skolemization in Prolog : the programmer does it)

The pair of literals
Append(nil, x, x), =Append(nil, cons(y, k(y)), cons(a, k(y))))
... contains the same predicate Append/3 but the arguments are different

There is however an MGU o = [x/cons(a, k(a)), y/a] that yields
{Append(nil, cons(a,k(a)), cons(a,k(a)))}, {—Append(nil, cons(a, k(a)), cons(a, k(a)))}
From this, the resolvent is the empty clause.

Artificial Intelligence 2015-2016 SLD Resolution [14]

The world of lists in Prolog

% Identical to built-in predicate append/3, although it uses "cons"

% as a defined predicate, thus allowing trace-ability.

append (cons (S ,X) ,Y,cons(S,2)) :- append(X,Y,Z).
append (nil , X, X) .

% WARNING: express your queries with cons. Examples:
% ?- append(cons(a,nil), cons(b,cons(c, nil)) ,cons(a,cons(b,cons(c, nil)))).

% ?- append(X,Y,cons(a,cons(b,cons(c, nil)))).

Artificial Intelligence 2015-2016 SLD Resolution [15]

Infinite SLD Trees (Girness of SLD)

= A first example:
1 = {{P(x), ~P(x)}}
—~¢ ={—~P(X)}

goal: ﬂlP(X) []
{=P()}, {P(Xll), ~P(xy).} [
{- P(Xl?} [X/x4]
{=P(x)}, {P(Xz)l, ~P(x5),} Di/x]
{=P(x)} [f</><1] [X1/%;]

Since IT £ ¢, the method can diverge (and it does...)

Artificial Intelligence 2015-2016 SLD Resolution [16]

Infinite SLD Trees (Birness of SL.D)

= A second example:
1 = {{P(x), ~P(X)}, {P(a)}}
—¢ = {~P(x)}

goal: —iP(x) []
{=P(X)}, {P(Xll)1 —P(x).} [] {=P()}, {lF’(a)} [x/a]

{- P(Xll)} [X/X4] {3 bval
{—=P(x)} {P(X2)|, —P(Xp).} D/x]
{=P(x,)} [|X/ X1] [X1/%]

In this case IT |= ¢, so the method should not diverge.

However, when a depth-first selection function is used, the infinite branch
in the SLD-tree makes the method diverge anyway.

A fair selection function is such that no possible resolution will be postponed
indefinitely: that is, any possible resolution will be performed, eventually.

Artificial Intelligence 2015-2016 SLD Resolution [17]

