
Artificial Intelligence - AA 2012/2013

Lab 2 - 1

Artificial Intelligence

Lab 2
Marco Piastra

Artificial Intelligence - AA 2012/2013

Lab 2 - 2

� An abstract model of effective computation
A tape, made up of individual cells

Each cell contains a symbol, from a finite alphabet

A read/write head, which can move in each direction - one cell at time

A state register that keeps the current state, from a finite set

A transition table, i.e. a set of entries like this:

{ <current state, symbol read> <next state, symbol written, move> }

The transition table describes a finite state machine

Each transition is governed by the input symbol, the current state
and the corresponding entry in the transition table

The next state is written into the state register

The output is written to the cell

Then the head moves (i.e. left, right, none)

Turing Machine (A. Turing, 1937)

Artificial Intelligence - AA 2012/2013

Lab 2 - 3

� As with the `basic’ model, but the transition table is part of the input
The transition table is loaded from the tape, at the beginning of computation

In its initial state,
the machine contains
only its `firmware’
which is just sufficient
for loading the table

Universal Turing Machine (A. Turing, 1937)

Artificial Intelligence - AA 2012/2013

Lab 2 - 4

Church-Turing Thesis

Caution: there is no such a thesis in the original writings of
either author. Its formulation can be extrapolated from both.
Hence the attribution (made by others)

� A possible formulation (from Wikipedia):

“Every 'function which would naturally be regarded as computable‘
can be computed by a Turing machine.”

The vagueness in the above sentence gives raise to different interpretations.
One of these (though not entirely equivalent) is (from Wikipedia):

“Every 'function that could be physically computed‘
can be computed by a Turing machine.”

Searle: “... At present, obviously, the metaphor is the digital computer.”

Artificial Intelligence - AA 2012/2013

Lab 2 - 5

(file turingmachine.jess)

� Asserting a fact in working memory

Example:
(defrule event

?tm <- (tm (current-state ?cs&~:(eq ?cs halt))

(current-square ?is))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns)

(head-move ?mv))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os " move " ?mv crlf)

(modify ?tm (current-square ?os)

(current-state ?ns))

(assert (move ?tm ?mv))

)

assert

The fact is inserted in memory

Artificial Intelligence - AA 2012/2013

Lab 2 - 6

(file turingmachine.jess)

� Retracting (i.e. removing) a fact from working memory

Example:
(defrule move-right

(declare (salience 1))

?action <- (move ?tm right)

?tm <- (tm (left-part $?rest-left)

(current-square ?sym)

(right-part ?sym-right $?rest-right))

=>

(modify ?tm (left-part ?sym ?rest-left)

(current-square ?sym-right)

(right-part ?rest-right))

(retract ?action)

)

retract

The fact is retracted from memory

This variable
binds to the
fact to be retracted

Artificial Intelligence - AA 2012/2013

Lab 2 - 7

(file turingmachine.jess)

� The binding between variables and value can be constrained

Example:
(defrule event

?tm <- (tm (current-state ?cs&~:(eq ?cs halt))

(current-square ?is))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns)

(head-move ?mv))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os " move " ?mv crlf)

(modify ?tm (current-square ?os)

(current-state ?ns))

(assert (move ?tm ?mv))

)

Constraints on variables

ConstraintVariable

General syntax:
&:<constraint> positive form

&~:<constraint> negative form

Artificial Intelligence - AA 2012/2013

Lab 2 - 8

(file turingmachine.jess)

� Altering salience (i.e. priority) of a rule

Example:
(defrule move-right

(declare (salience 1))

?action <- (move ?tm right)

?tm <- (tm (left-part $?rest-left)

(current-square ?sym)

(right-part ?sym-right $?rest-right))

=>

(modify ?tm (left-part ?sym ?rest-left)

(current-square ?sym-right)

(right-part ?rest-right))

(retract ?action)

)

salience

It is not a a clause, is a declaration
It is optional
By default the value of salience is 0

Artificial Intelligence - AA 2012/2013

Lab 2 - 9

Agenda (i.e. How Jess works - in a second approximation)

� The Agenda contains all applicable combinations rule-facts

MATCH
Find all rule applications and insert them in Agenda

(i.e. combinations of a rule and facts matching its LHS)

CONFLICT RESOLUTION
Select one rule in Agenda: higher salience comes first

(always, one and only one)

FIRE
Apply the selected rule
by executing its RHS

Is the agenda empty?
no

yes

Artificial Intelligence - AA 2012/2013

Lab 2 - 10

(file turingmachine.jess)

� A finite-state automaton + a read/write moving head + an infinite tape

(deftemplate tm

(slot current-state)

(multislot left-part)

(slot current-square)

(multislot right-part)

)

Turing Machine

Artificial Intelligence - AA 2012/2013

Lab 2 - 11

(file turingmachine.jess)

� The Turing Machine and the entries in the transition table

(deftemplate tm

(slot current-state)

(multislot left-part)

(slot current-square)

(multislot right-part)

)

(deftemplate event

(slot current-state)

(slot input-symbol)

(slot output-symbol)

(slot new-state)

(slot head-move)

)

Turing Machine

Artificial Intelligence - AA 2012/2013

Lab 2 - 12

(file turingmachine.jess)

� Questions (for you):

a) How do the rule in this program work?

b) How does the program simulate a infinite tape (in both directions)?

c) Why the rules have different salience?

d) What would it happen if we made all rules have salience 0 ?
Try modify the file then, before (run),
issue the command (set-strategy breadth)

(Extra bonus: look into the Jess documentation to discover
what the last command mean)

(use the example paritychecker-tm.jess)

Turing Machine

