Artificial Intelligence - AA 2012/2013

Artificial Intelligence

Lab 2

Marco Piastra

Lab2-1

Turing Machine (A. Turing, 1937)

= An abstract model of effective computation
A tape, made up of individual cells
Each cell contains a symbol, from a finite alphabet
A read/write head, which can move in each direction - one cell at time
A state register that keeps the current state, from a finite set

A transition table, i.e. a set of entries like this:
{ <current state, symbol read> — <next state, symbol written, move> }

moving CPU

readiwrite device %II:II

1

o(1|1|(0]|0

The transition table describes a finite state machine

Each transition is governed by the input symbol, the current state
and the corresponding entry in the transition table

The next state is written into the state register
The output is written to the cell
Then the head moves (i.e. left, right, none)

memory tape

Lab2-2

Artificial Intelligence - AA 2012/2013

Universal Turing Machine . turing, 1937)

= As with the "basic’ model, but the transition table is part of the input
The transition table is loaded from the tape, at the beginning of computation

In its initial state,
the machine contains
only its "firmware’
which is just sufficient

TAPE

In some models the HEAD shuttles back and forth between various regions on the TAPE,
in other models the HEAD shuttles the TAPE back and forth

for loading the table ‘

. HEAD
“— _» “«—_—> “—
e N . ¥
/ 3 s o
/ ! Y ’ 5
‘ ‘) b i “‘
. !
ine M Inputto M | Output
inp g , 1 P
| | I ; | H
\\] \\ i
o 4 Yo /,f
Scanned Current Current Current
symbol state A: state B e | State
. y TABLE Of U Write Move Mext| Write Move MNext Write Move Mext
Pr]n‘t Sk El’aSE symbot tape: state: | symbol tape: state: symbol: tape: state:
!)
A tape symbol is blank 1 R A 1 R P i R M
Left, Right tape symbol is 0 1 R B 0 L K 1 L N
tape symbol is 1 X R © E R H X N Q
tape symhol is X: o L D E N u a R P
tape symbolis Y 1 E E 1 R 5 ¥ R H
- tc. EE, =50 ot e el i | (et el e e R
Control unit =

The Universal machine U consists of a set of instructions in the TABLE that can "execute" the

correctly-formulated "code number” of any arbitrary Turing machine M on its TAPE.
(Entries in the TABLE are fictitious; drawing partially after Davis (2000), p. 164.

Lab2-3

Church-Turing Thesis

Caution: there is no such a thesis in the original writings of
either author. Its formulation can be extrapolated from both.
Hence the attribution (made by others)

= A possible formulation (from Wikipedia):

“Every ‘function which would naturally be regarded as computable®
can be computed by a Turing machine.”

The vagueness in the above sentence gives raise to different interpretations.
One of these (though not entirely equivalent) is (from Wikipedia):

“Every ‘function that could be physically computed*
can be computed by a Turing machine.”

{3

Searle: “... At present, obviously, the metaphor is the digital computer.”

Lab2-4

Artificial Intelligence - AA 2012/2013

assert

(file turingmachine.jess)
= Asserting a fact in working memory

Example:

(defrule event
?tm <- (tm (current-state ?csé&~: (eq ?cs halt))
(current-square ?is))
(event (current-state ?cs)
(input-symbol ?is)
(output-symbol ?o0s)
(new—state ?ns)
(head—-move ?mv))
=>
(printout t "From state " ?cs " input " ?is
" to state " ?ns " output " ?o0s " move " ?mv crlf)
(modify ?tm (current-square ?os)
| (current—-state ?ns))
(assert (move ?tm ?mv)) The fact is inserted in memory

Lab2-5

retract

(file turingmachine.jess)
= Retracting (i.e. removing) a fact from working memory

Example:

(defrule move-right
(declare (salience 1))
?action <- (move ?tm right)
?tm <- (tm (left-part $?rest-left)
(current—-square ?sym)
(right—-part ?sym-right S$?rest-right))

This variable
binds to the
fact to be retracted

=>

(modify ?tm (left-part 7?sym ?rest-left)
(current-square ?sym-right)
(right-part ?rest-right))

(retract ?action) The fact is retracted from memory

Lab2-6

Artificial Intelligence - AA 2012/2013

Constraints on variables

(file turingmachine.jess)

= The binding between variables and value can be constrained

Example:

(defrule event |
?tm <- (tm (current-state ?cs$~:(eq ?cs halt))
(current-square ?is))
(event (current-state ?cs)

Variable Constraint

(input-symbol ?is) General syn.tax: N
(output-symbol 2?os) & : <constraint> positive form
(new—-state ?ns) &~:<constraint> negative form

(head—-move ?mv))
=>
(printout t "From state " ?cs " input " ?is
" to state " ?ns " output " ?o0s " move " ?mv crlf)
(modify ?tm (current-square ?os)
(current-state ?ns))
(assert (move ?tm ?mv))

Lab2-7

salience

(file turingmachine.jess)

= Altering salience (i.e. priority) of a rule

Example: It is not a a clause, is a declaration

(defrule move-right | It is optional
(declare (salience 1)) By default the value of salience is 0
?action <- (move ?tm right)
?tm <- (tm (left-part $?rest-left)
(current-square ?sym)
(right-part ?sym-right $?rest-right))

=>
(modify ?tm (left-part 7?sym ?rest-left)
(current-square ?sym-right)
(right-part ?rest-right))
(retract ?action)

Lab2-8

Artificial Intelligence - AA 2012/2013

Agenda (i.e. How Jess works - in a second approximation)

= The Agenda contains all applicable combinations rule-facts

!

Is the agenda empty? yes

no

Artificial Intelligence - AA 2012/2013 moving CPU

readiwrite device %II:II

Turing Machine

1T,0(1 (1|00

(file turingmachine.jess)

memory tape

= A finite-state automaton + a read/write moving head + an infinite tape

(deftemplate tm
(slot current-state)
(multislot left-part)
(slot current-square)
(multislot right-part)

Lab 2 - 10

Artificial Intelligence - AA 2012/2013 moving CPU

Tu ri ng Mac hi n e readiwrite device %II:II

1T,0(1 (1|00

(file turingmachine.jess)

memory tape

» The Turing Machine and the entries in the transition table

(deftemplate tm
(slot current-state)
(multislot left-part)
(slot current-square)
(multislot right-part)

(deftemplate event
(slot current-state)
(slot input-symbol)
(slot output-symbol)
(slot new—-state)
(slot head—move)

Lab 2 - 11

|

Artificial Intelligence - AA 2012/2013 moving CPU

readiwrite device %II:II

Turing Machine

(file turingmachine.jess) 1(o0(1]1|0]0

memory tape
= Questions (for you):
a) How do the rule in this program work?
b) How does the program simulate a infinite tape (in both directions)?
c) Why the rules have different salience?
)

d) What would it happen if we made all rules have salience 0 ?

Try modify the file then, before (run),
issue the command (set-strategy breadth)

(Extra bonus: look into the Jess documentation to discover
what the last command mean)

(use the example paritychecker-tm.jess)

Lab2-12

