Artificial Intelligence - AA 2012/2013

Artificial Intelligence

Lab 1

Marco Piastra

Lab 1 -1

Jess?

Acronym of Java Expert System Shell

= A small environment written in Java
Author: Ernest Friedman-Hill, Sandia National Laboratories in Livermore, Canada

Rule-based system: the main programming construct is the rule
if <cond> then <action>
It is derived from an older and much larger system: CLIPS
Adopts the syntax of the LISP programming language

A program in Jess is mostly made up of a set rules
to be applied to a set of facts

Lab 1-2

Java: using the CLASSPATH variable

You do not know what this is?
It’s normal: you never used Java at all

Impostazione della variabile cLasspaTH
$ CLASSPATH=<value> $ is the system prompt (do not write it, the system does)
$ export CLASSPATH

To make sure that the above worked
$ echo S$CLASSPATH

In our case:
$ CLASSPATH=/home/opt/Jess61p8
$ export CLASSPATH

Make sure you respect small and capital letters! (It’s Linux, not Windows)

Starting Jess
$ java jess.Main
Jess>

Quitting Jess
Jess> (exit)
$

(Wow, you made it!)

Lab1-3

Artificial Intelligence - AA 2012/2013
Lists

(file finitestatemachine.jess)

= The LISP syntax

It could hardly be simpler: everything is either an symbol or a list.
LISP: Lots of Impossible Stupid Parenthesis

Example:

(deftemplate fsm
(slot current-state)
(multislot input-stream)
(multislot output-stream)

)
Lists can be nested at will (make sure you balance parentheses)

Example:
(exit)
Every Jess command is a list.

= Every legitimate Jess expression is a list

Lab1-4

deftemplate

(file finitestatemachine.jess)

» |t defines template for structured facts (=basic data items in Jess)

Example:

(deftemplate event
(slot current-state)
(slot input-symbol)
(slot output-symbol)
(slot new—-state)

)

It is the template of individual facts like this:

(event
(current—-state even)
(input-symbol 1)
(output-symbol 1)
(new—state odd)

)
Every slot will have exactly one value

Lab1-5

defrule

(file finitestatemachine.jess)

= |t defines a rule

Example:

(defrule state-transition
?current <- (fsm (current-state ?cs)
(input-stream ?is $?rest)
(output-stream $?output))
(event (current-state ?cs)
(input-symbol ?is)
(output-symbol ?os)
(new—-state ?ns))
=>
(printout t "From state " ?cs " input " ?is
" to state " ?ns " output " ?o0s crlf)
(modify ?current (current-state ?ns)
(input-stream ?rest)
(output-stream ?os ?output))

)
The meaning: the whole Jess language could fit it in.

Lab1-6

defrule

(file finitestatemachine.jess)

= |t defines a rule

Example: The whole thing is a list

(defrule state-transition
?current <- (fsm (current-state ?cs)
(input-stream ?is $7?rest)
(output—-stream $?output))
(event (current-state ?cs)
(input-symbol ?is)
(output-symbol ?o0s)
(new—-state ?ns))
=>
(printout t "From state " ?c¢s " input " ?is
" to state " ?ns " output " ?o0s crlf)
(modify ?current (current-state ?ns)
(input-stream ?rest)
(output-stream ?os ?output))

Lab1-7

defrule

(file finitestatemachine.jess)

» |t defines a rule
Example: Name of the rule, just an id

(defrule state-transition
?current <- (fsm (current-state ?cs)
(input-stream ?is $?rest)
(output-stream $?output))
(event (current-state ?cs)
(input-symbol ?is)
(output-symbol ?os)
(new—-state ?ns))

=>
(printout t "From state " ?cs " input " ?is
" to state " ?ns " output " ?o0s crlf)
(modify ?current (current-state ?ns)
(input-stream ?rest)
(output-stream ?os ?output))

Lab1-8

defrule

(file finitestatemachine.jess)

= |t defines a rule

Example:

(defrule state-transition
?current <- (fsm (current-state ?cs)
(input-stream ?is $?rest)
(output-stream $?output))
(event (current-state ?cs)
(input-symbol ?is)
(output-symbol ?os)
(new—-state ?ns))

Separator: =>

justfﬁndtfﬁs (printout t "From state " ?cs " input " ?is

first " to state " ?ns " output " ?o0s crlf)

Irs (modify ?current (current-state ?ns)
(input-stream ?rest)
(output-stream ?os ?output))

Lab1-9

defrule

(file finitestatemachine.jess)

= |t defines a rule

Example:
(defrule state—-transition

?current <- (fsm (current-state ?cs)
(input-stream ?is $7?rest)
(output—-stream $?output))
(event (current-state ?cs)
(input-symbol ?is)
(output-symbol ?o0s)
(new—-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

(LHS - Left Hand Side):
the logical conditions
that determine the
applicability of the rule

" to state " ?ns " output " ?o0s crlf)

(modify ?current (current-state ?ns)
(input-stream ?rest)

(output-stream ?os ?output))

)
Lab 1 - 10

defrule

(file finitestatemachine.jess)

= |t defines a rule

Example:
(defrule state—-transition
?current <- (fsm (current-state ?cs) Think about the LHS
(input-stream ?is $7?rest) C
(output—-stream $?output)) as the description
(event (current-state ?cs) OfEipattern
(input-symbol ?is) to be applied to facts
(output-symbol ?o0s)
(new—-state ?ns))
=>
(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?o0s crlf)
(modify ?current (current-state ?ns)
(input-stream ?rest)
(output-stream ?os ?output))

Lab 1 - 11

defrule

(file finitestatemachine.jess)

= |t defines a rule

Example:

(defrule state-transition

?current <- (fsm (current-state ?cs) (RHS - Right Hand Side):
(input-stream ?is $?rest) it describes the actions
(output-stream $?output))

(event (current-state 2?cs) to be performed
(input-symbol ?is) when the rule is FIREd
(output-symbol ?os)

(new—-state ?ns))
=>
(printout t "From state " ?c¢s " input " ?is
" to state " ?ns " output " ?o0s crlf)
(modify ?current (current-state ?ns)
(input-stream ?rest)
(output-stream ?os ?output))

)
Lab 1 - 12

defrule

(file finitestatemachine.jess)

= |t defines a rule

Example:
(defrule state-transition
?current <- (fsm (current-state ?cs)
(input-stream ?is $?rest)
(output-stream $?output))
(event (current-state ?cs)
(input-symbol ?is)
(output-symbol ?os)
(new—-state ?ns))
=> .
(printout t "From state " ?cs " input " ?is Facts can be either
" to state " ?ns " output " ?0s crlf) asserted or retracted

(modify ?current (current-state ?ns)

(input-stream ?rest)
(output-stream ?os ?output)) Mgssages can be
printed

)
Lab 1 - 13

defrule

(file finitestatemachine.jess)

= |t defines a rule

Example:

(defrule state-transition This is a variable
?current <- (fsm (current-state ?cs)
(input-stream ?is $?rest)
(output-stream $?output))
(event (current-state ?cs)
(input-symbol ?is)
(output-symbol ?os)
(new—-state ?ns))

=>
(printout t "From state " ?cs " input " ?is
" to state " ?ns " output " ?o0s crlf)
(modify ?current (current-state ?ns)
(input-stream ?rest)
(output-stream ?os ?output))

Lab 1 - 14

defrule

(file finitestatemachine.jess)
= |t defines a rule

Example: A Jess variable

(defrule state-transition is always preceded by ?
?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)
(output—-stream $?output))
(event (current-state ?cs)
(input-symbol ?is)
(output-symbol ?o0s)
(new—-state ?ns))

=>
(printout t "From state " ?cs " input " ?is
" to state " ?ns " output " ?o0s crlf)
(modify ?current (current-state ?ns)
(input-stream ?rest)
(output-stream ?os ?output))

Lab 1 - 15

defrule

(file finitestatemachine.jess)

= |t defines a rule

Example: If the overall pattern matches

(defrule state-transition each variable will bind to a symbol
?current <- (fsm (current-state ?cs)
(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is) CAUTIQN: .
(output—symbol 2?os) matching the pattern in the LHS
(new-state ?ns)) is an “all or nothing” matter...

=>
(printout t "From state " ?cs " input " ?is
" to state " ?ns " output " ?o0s crlf)
(modify ?current (current-state ?ns)
(input-stream ?rest)
(output-stream ?os ?output))

Lab 1-16

defrule

(file finitestatemachine.jess)

= |t defines a rule

Example:

(defrule state-transition
A variable ?current <- (fsm (current-state ?cs)
. (input-stream ?is $?rest)
can also bind (output-stream $?output))
to a fact (event (current-state 2cs)
(input-symbol ?is)
(output-symbol ?os)
(new—-state ?ns))

=>
(printout t "From state " ?cs " input " ?is
" to state " ?ns " output " ?o0s crlf)
(modify ?current (current-state ?ns)
(input-stream ?rest)
(output-stream ?os ?output))

Lab 1-17

defrule

(file finitestatemachine.jess)
= |t defines a rule
Example:

(defrule state-transition
?current <-— (fsm (current-state ?cs)
(input-stream ?is $?rest) The S(Dperator
(output-stream $?output)) Makes the variable

(event (current-state ?cs) bind to a list of values
(input-symbol ?is)

(output-symbol ?os)
(new—state ?ns))

=>
(printout t "From state " ?cs " input " ?is
" to state " ?ns " output " ?o0s crlf)
(modify ?current (current-state ?ns)
(input-stream ?rest)
(output-stream ?os ?output))

Lab 1-18

defrule

(file finitestatemachine.jess)

= |t defines a rule

Example:

(defrule state-transition

?current <- (fsm (current-state ?cs) Diff ¢
(input-stream ?is $?rest) nrerent occurrences

(output-stream $?output)) of the same variable

(event (current-state ?cs) in the LHS:

(input-symbol ?is) they all bind to

(output-symbol ?os)

(new—state ?ns)) the same value
=

(printout t "From state "%?cs " input " ?is

" to state " ?ns " output " ?o0s crlf)
(modify ?current (current-state ?ns)
(input-stream ?rest)
(output-stream ?os ?output))

)
Lab 1-19

defrule

(file finitestatemachine.jess)

= |t defines a rule

Example:

(defrule state-transition
?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output—-stream $?output))

(évent (current-=state 2es) A (ogical clause, part of the LHS
(input-symbol ?is)
(output-symbol ?o0s)
(new—-state ?ns))

=>
(printout t "From state " ?cs " input " ?is
" to state " ?ns " output " ?o0s crlf)
(modify ?current (current-state ?ns)
(input-stream ?rest)
(output-stream ?os ?output))

Lab 1 - 20

defrule

(file finitestatemachine.jess)

= |t defines a rule

Example:

(defrule state-transition
?current <- (fsm (current-state ?cs)
(input-stream ?is $?rest)
(output—-stream $?output))

- ?
(event E:ﬁ;ﬁ:r_lzy:;ie.,l:)s) If the pattern matches, each clause binds

(output-symbol 20s) L[O a fact, not necessarily distinct
(new—-state ?ns))

=>
(printout t "From state " ?cs " input " ?is
" to state " ?ns " output " ?o0s crlf)
(modify ?current (current-state ?ns)
(input-stream ?rest)
(output-stream ?os ?output))

Lab 1 - 21

defrule

(file finitestatemachine.jess)

= |t defines a rule

Example:

(defrule state-transition
?current <—- (fsm (current-state 2?cs) Another logical clause.

(input-stream ?;S $?rest) There are two clauses
(output-stream $?output)) . .
(event (current-state ?cs) in this LHS.

(input-symbol ?is)

(output-symbol ?os)

(new—-state ?ns))

=>
(printout t "From state " ?cs " input " ?is
" to state " ?ns " output " ?o0s crlf)
(modify ?current (current-state ?ns)
(input-stream ?rest)
(output-stream ?os ?output))

Lab 1 - 22

defrule

(file finitestatemachine.jess)

= |t defines a rule

Example:

(defrule state-transition
?current <- (fsm (current-state ?cs)
(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)
(output-symbol ?os)
(new—state ?ns))

=>

(printout t "From state " ?cs " input " ?is

Different occurrences

of the same variable
define a constraint across
clauses, since they all bind
to the same

value

" to state " ?ns " output " ?o0s crlf)

(modify ?current (current-state ?ns)
(input-stream ?rest)

(output-stream ?os ?output))

|

Lab 1 - 23

defrule

(file finitestatemachine.jess)

= |t defines a rule

Example:
(defrule state-transition
?current <- (fsm (current-state ?cs) Another constraint
(input-stream ?is S$?rest)
(output-stream $?output))

(input-symbol ?is)

(output-symbol ?os)
(new—-state ?ns))
=>
(printout t "From state " ?cs " input " ?is
" to state " ?ns " output " ?o0s crlf)
(modify ?current (current-state ?ns)
(input-stream ?rest)
(output-stream ?os ?output))

Lab 1 - 24

Artificial Intelligence - AA 2012/2013

defrule

(file finitestatemachine.jess)

= |t defines a rule
Example:

(defrule state-transition

?current

L=

(fsm (current-state ?cs)
(input-stream ?is $?rest)
(output—-stream $?output))

(event (current-state ?cs)
(input-symbol ?is)
(output-symbol ?o0s)
(new—-state ?ns))

=>

(printout t "From state " ?cs " input " ?is
" to state " ?ns " output " ?o0s crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

This variable binds to the
fact that matches the clause

(output-stream ?os ?output))

Lab 1 - 25

Artificial Intelligence - AA 2012/2013

defrule

(file finitestatemachine.jess)

= |t defines a rule
Example:

(defrule state-transition

?current

L=

(fsm (current-state ?cs)
(input-stream ?is $?rest)
(output—-stream $?output))

(event (current-state ?cs)
(input-symbol ?is)
(output-symbol ?o0s)
(new—-state ?ns))

=>

(printout t "From state " ?cs " input " ?is
" to state " ?ns " output " ?o0s crlf)

(modify??current%(current—state ?ns)

- (input-stream ?rest)

The binding of variables
propagates from the LHS
to the RHS

(output-stream ?os ?output))

Lab 1 - 26

defrule

(file finitestatemachine.jess)

= |t defines a rule
Example:

(defrule state-transition

?current <- (fsm (current-state ?cs)
(input-stream ?is $?rest)
(output—-stream $?output))

(event (current-state ?cs)
(input-symbol ?is)

(output-sym

ol

(new—state

?ns)

?0s)

=>

)

More examples

(printout t "From state " ?cs " input " ?is

" to state

" ?ns " outpu

(modify °current (current- state3°ns)

1t

(input-stream °rest)
(output- stream3°osi°output))

"

?0s crlf)

Lab 1 - 27

deffacts

(file paritychecker-fsa.jess)
= |t is used to define the initial facts, that are in memory at the beginning

The (reset) command erases the working memory and re-asserts
all facts defined with deffacts

Example:
(deffacts test-string

(fsm (current-state even)
(input-stream 0 1 1 1 0 0 1 1)

(output-stream))

Lab 1 - 28

deffacts

(file paritychecker-fsa.jess)
= |t is used to define the initial facts, that are in memory at the beginning

The (reset) command erases the working memory and re-asserts
all facts defined with deffacts

Example:
(deffacts test-string

I e — In this particular case, just
(input-stream 0 1 1 1 0 0 1 1) an individual fact is asserted

(output-stream))

Lab 1 - 29

deffacts

(file paritychecker-fsa.jess)
= |t is used to define the initial facts, that are in memory at the beginning

The (reset) command erases the working memory and re-asserts
all facts defined with deffacts

Example:

(deffacts test-string) . .
(fsm (current-state even) In this partlcular case, just

(input-stream 0 1 1 1 0 0 1 1) an individual fact is asserted

SRSREERESSSS) In general, any number of facts
can be asserted via a deffacts

|

Lab 1 - 30

deffacts

(file paritychecker-fsa.jess)

= |t is used to define the initial facts, that are in memory at the beginning
The (reset) command erases the working memory and re-asserts

all facts defined with deffacts

Example:
(deffacts test-string

(fsm (current-state even)
(input-stream 0 1 1 1 0 0 1 1)

(output-stream))

In this particular case, just
an individual fact is asserted

In general, any number of facts
can be asserted via a deffacts

There can be many deffacts
in the same program

|

Lab 1 - 31

deffacts

(file paritychecker-fsa.jess)

= |t is used to define the initial facts, that are in memory at the beginning
The (reset) command erases the working memory and re-asserts

all facts defined with deffacts

Example:
(deffacts test-string

(fsm (current-state even)
(input-stream 0 1 1 1 0 0 1 1)

(output-stream))

In this particular case, just
an individual fact is asserted

In general, any number of facts
can be asserted via a deffacts

There can be many deffacts
in the same program

All of them will be executed
by the command (reset)

|

Lab 1 - 32

How to load a program

Start Jess first (it improves the effect)

$ java jess.Main
Jess>

= Loading a file
(batch paritychecker-fsa. jess)
also
(batch “paritychecker—-fsa. jess”)

If it worked, Jess will say:
TRUE

Lab 1-33

Artificial Intelligence - AA 2012/2013

How Jess works (in a first approximation)

= Once activated, Jess repeats the same execution cycle

!

Are there rule applications? no

yes

Lab 1 - 34

How to start Jess execution

= Reset: erases memory and re-asserts the initial facts
It causes the execution of deffacts
Make sure you always do a “reset” before a new run!

(reset)

Jess answers:
TRUE

= Run: starts the main execution cycle

(run)

Jess answers:

<here comes the program’s output>
TRUE

Lab 1 - 35

Artificial Intelligence - AA 2012/2013

A few debugging commands

= Execute one cycle at time (i.e. step mode)

(run 1)

Also (run n) to execute n cycles

= List all facts currently in memory
(facts)

The answer is not very readable, it takes some effort to decode it

= List all rule applications (one rule + facts matching its LHS)
(agenda)

The answer is not very readable, it takes some effort to decode it

Lab 1 - 36

