
Artificial Intelligence - AA 2012/2013

Lab 1 - 1

Artificial Intelligence

Lab 1
Marco Piastra

Artificial Intelligence - AA 2012/2013

Lab 1 - 2

Jess?

Acronym of Java Expert System Shell

� A small environment written in Java
Author: Ernest Friedman-Hill, Sandia National Laboratories in Livermore, Canada

Rule-based system: the main programming construct is the rule
if <cond> then <action>

It is derived from an older and much larger system: CLIPS

Adopts the syntax of the LISP programming language

A program in Jess is mostly made up of a set rules
to be applied to a set of facts

Artificial Intelligence - AA 2012/2013

Lab 1 - 3

Java: using the CLASSPATH variable

You do not know what this is?
It’s normal: you never used Java at all

Impostazione della variabile CLASSPATH
$ CLASSPATH=<value> $ is the system prompt (do not write it, the system does)
$ export CLASSPATH

To make sure that the above worked
$ echo $CLASSPATH

In our case:
$ CLASSPATH=/home/opt/Jess61p8
$ export CLASSPATH

Make sure you respect small and capital letters! (It’s Linux, not Windows)

Starting Jess
$ java jess.Main
Jess>

Quitting Jess
Jess> (exit)
$

(Wow, you made it!)

Artificial Intelligence - AA 2012/2013

Lab 1 - 4

Lists

(file finitestatemachine.jess)

� The LISP syntax

It could hardly be simpler: everything is either an symbol or a list.
LISP: Lots of Impossible Stupid Parenthesis

Example:
(deftemplate fsm

(slot current-state)

(multislot input-stream)

(multislot output-stream)

)

Lists can be nested at will (make sure you balance parentheses)

Example:
(exit)

Every Jess command is a list.

� Every legitimate Jess expression is a list

Artificial Intelligence - AA 2012/2013

Lab 1 - 5

deftemplate

(file finitestatemachine.jess)

� It defines template for structured facts (=basic data items in Jess)

Example:
(deftemplate event

(slot current-state)

(slot input-symbol)

(slot output-symbol)

(slot new-state)

)

It is the template of individual facts like this:
(event

(current-state even)

(input-symbol 1)

(output-symbol 1)

(new-state odd)

)

Every slot will have exactly one value

Artificial Intelligence - AA 2012/2013

Lab 1 - 6

defrule

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

The meaning: the whole Jess language could fit it in.

Artificial Intelligence - AA 2012/2013

Lab 1 - 7

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

The whole thing is a list

Artificial Intelligence - AA 2012/2013

Lab 1 - 8

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

Name of the rule, just an id

Artificial Intelligence - AA 2012/2013

Lab 1 - 9

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

Separator:
just find this
first

Artificial Intelligence - AA 2012/2013

Lab 1 - 10

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

(LHS - Left Hand Side):
the logical conditions
that determine the
applicability of the rule

Artificial Intelligence - AA 2012/2013

Lab 1 - 11

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

Think about the LHS
as the description
of a pattern
to be applied to facts

Artificial Intelligence - AA 2012/2013

Lab 1 - 12

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

(RHS - Right Hand Side):
it describes the actions
to be performed
when the rule is FIREd

Artificial Intelligence - AA 2012/2013

Lab 1 - 13

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

Facts can be either
asserted or retracted

Messages can be
printed

Artificial Intelligence - AA 2012/2013

Lab 1 - 14

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

This is a variable

Artificial Intelligence - AA 2012/2013

Lab 1 - 15

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

A Jess variable
is always preceded by ?

Artificial Intelligence - AA 2012/2013

Lab 1 - 16

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

If the overall pattern matches
each variable will bind to a symbol

CAUTION:

matching the pattern in the LHS

is an “all or nothing” matter…

Artificial Intelligence - AA 2012/2013

Lab 1 - 17

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

A variable
can also bind

to a fact

Artificial Intelligence - AA 2012/2013

Lab 1 - 18

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

The $ operator
makes the variable
bind to a list of values

Artificial Intelligence - AA 2012/2013

Lab 1 - 19

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

Different occurrences
of the same variable
in the LHS:
they all bind to
the same value

Artificial Intelligence - AA 2012/2013

Lab 1 - 20

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

A logical clause, part of the LHS

Artificial Intelligence - AA 2012/2013

Lab 1 - 21

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

If the pattern matches, each clause binds
to a fact, not necessarily distinct

Artificial Intelligence - AA 2012/2013

Lab 1 - 22

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

Another logical clause.
There are two clauses
in this LHS.

Artificial Intelligence - AA 2012/2013

Lab 1 - 23

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

Different occurrences
of the same variable
define a constraint across
clauses, since they all bind
to the same
value

Artificial Intelligence - AA 2012/2013

Lab 1 - 24

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

Another constraint

Artificial Intelligence - AA 2012/2013

Lab 1 - 25

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

This variable binds to the
fact that matches the clause

Artificial Intelligence - AA 2012/2013

Lab 1 - 26

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

The binding of variables
propagates from the LHS
to the RHS

Artificial Intelligence - AA 2012/2013

Lab 1 - 27

(file finitestatemachine.jess)

� It defines a rule

Example:
(defrule state-transition

?current <- (fsm (current-state ?cs)

(input-stream ?is $?rest)

(output-stream $?output))

(event (current-state ?cs)

(input-symbol ?is)

(output-symbol ?os)

(new-state ?ns))

=>

(printout t "From state " ?cs " input " ?is

" to state " ?ns " output " ?os crlf)

(modify ?current (current-state ?ns)

(input-stream ?rest)

(output-stream ?os ?output))

)

defrule

More examples

Artificial Intelligence - AA 2012/2013

Lab 1 - 28

(file paritychecker-fsa.jess)

� It is used to define the initial facts, that are in memory at the beginning

The (reset) command erases the working memory and re-asserts
all facts defined with deffacts

Example:
(deffacts test-string

(fsm (current-state even)

(input-stream 0 1 1 1 0 0 1 1)

(output-stream))

)

deffacts

Artificial Intelligence - AA 2012/2013

Lab 1 - 29

(file paritychecker-fsa.jess)

� It is used to define the initial facts, that are in memory at the beginning

The (reset) command erases the working memory and re-asserts
all facts defined with deffacts

Example:
(deffacts test-string

(fsm (current-state even)

(input-stream 0 1 1 1 0 0 1 1)

(output-stream))

)

deffacts

In this particular case, just
an individual fact is asserted

Artificial Intelligence - AA 2012/2013

Lab 1 - 30

(file paritychecker-fsa.jess)

� It is used to define the initial facts, that are in memory at the beginning

The (reset) command erases the working memory and re-asserts
all facts defined with deffacts

Example:
(deffacts test-string

(fsm (current-state even)

(input-stream 0 1 1 1 0 0 1 1)

(output-stream))

)

deffacts

In general, any number of facts
can be asserted via a deffacts

In this particular case, just
an individual fact is asserted

Artificial Intelligence - AA 2012/2013

Lab 1 - 31

(file paritychecker-fsa.jess)

� It is used to define the initial facts, that are in memory at the beginning

The (reset) command erases the working memory and re-asserts
all facts defined with deffacts

Example:
(deffacts test-string

(fsm (current-state even)

(input-stream 0 1 1 1 0 0 1 1)

(output-stream))

)

deffacts

There can be many deffacts

in the same program

In general, any number of facts
can be asserted via a deffacts

In this particular case, just
an individual fact is asserted

Artificial Intelligence - AA 2012/2013

Lab 1 - 32

(file paritychecker-fsa.jess)

� It is used to define the initial facts, that are in memory at the beginning

The (reset) command erases the working memory and re-asserts
all facts defined with deffacts

Example:
(deffacts test-string

(fsm (current-state even)

(input-stream 0 1 1 1 0 0 1 1)

(output-stream))

)

deffacts

All of them will be executed
by the command (reset)

There can be many deffacts

in the same program

In general, any number of facts
can be asserted via a deffacts

In this particular case, just
an individual fact is asserted

Artificial Intelligence - AA 2012/2013

Lab 1 - 33

How to load a program

Start Jess first (it improves the effect)

$ java jess.Main
Jess>

� Loading a file
(batch paritychecker-fsa.jess)

also

(batch “paritychecker-fsa.jess”)

If it worked, Jess will say:

TRUE

Artificial Intelligence - AA 2012/2013

Lab 1 - 34

How Jess works (in a first approximation)

� Once activated, Jess repeats the same execution cycle

MATCH
Find all rule applications

(i.e. combinations of a rule and facts matching its LHS)

CONFLICT RESOLUTION
Select one rule

(always, one and only one)

FIRE
Apply the selected rule
by executing its RHS

Are there rule applications?
yes

no

Artificial Intelligence - AA 2012/2013

Lab 1 - 35

How to start Jess execution

� Reset: erases memory and re-asserts the initial facts
It causes the execution of deffacts

Make sure you always do a “reset” before a new run!

(reset)

Jess answers:

TRUE

� Run: starts the main execution cycle

(run)

Jess answers:
<here comes the program’s output>

TRUE

Artificial Intelligence - AA 2012/2013

Lab 1 - 36

A few debugging commands

� Execute one cycle at time (i.e. step mode)
(run 1)

Also (run n) to execute n cycles

� List all facts currently in memory
(facts)

The answer is not very readable, it takes some effort to decode it

� List all rule applications (one rule + facts matching its LHS)
(agenda)

The answer is not very readable, it takes some effort to decode it

