Artificial Intelligence

Horn Clauses and SLD Resolution

Marco Piastra

Horn Clauses (in L_{p})

- Definition

A Horn Clause is a wff in CF that contains at most one literal in positive form

- Three types of Horn Clauses:

Rule: two or more literals, one positive
Examples: $\{B, \neg D, \neg A, \neg C\},\{A, \neg B\} \quad$ (equivalent to: $(D \wedge A \wedge C) \rightarrow B, B \rightarrow A)$
Facts: just one positive literal
Examples: $\{B\},\{A\}$
Goal: one or more literals, all negative
Examples: $\{\neg B\},\{\neg A, \neg B\}$

More terminology:

Rules and facts are also called definite clauses
Goals are allo called negative clauses

Lost in Translation...

Many wffs can be translated into Horn clauses:

$$
\begin{aligned}
&(A \wedge B) \rightarrow C \\
& \neg(A \wedge B) \vee C \\
& \neg A \vee \neg B \vee C \\
& A \rightarrow(B \wedge C) \\
& \neg A \vee(B \wedge C) \\
&(\neg A \vee B) \wedge(\neg A \vee C) \\
&(\neg A \vee B),(\neg A \vee C) \\
&(A \vee B) \rightarrow C \\
& \neg(A \vee B) \vee C \\
&(\neg A \wedge \neg B) \vee C \\
&(\neg A \vee C) \wedge(\neg B \vee C) \\
&(\neg A \vee C),(\neg B \vee C)
\end{aligned}
$$

But not all of them:

$$
\begin{aligned}
&(A \wedge \neg B) \rightarrow C \\
& \neg(A \wedge \neg B) \vee C \\
& \neg A \vee B \vee C \\
& A \rightarrow(B \vee C) \\
& \neg A \vee B \vee C
\end{aligned}
$$

```
```

(rewriting }->\mathrm{)

```
```

(rewriting }->\mathrm{)
(De Morgan - CF - it is a rule)
(De Morgan - CF - it is a rule)
(rewriting }->\mathrm{)
(rewriting }->\mathrm{)
(distributing V)
(distributing V)
(CF - two rules)
(CF - two rules)
(rewriting }->\mathrm{)
(rewriting }->\mathrm{)
(De Morgan)
(De Morgan)
(distributing V)
(distributing V)
(CF - two rules)

```
```

(CF - two rules)

```
```


SLD Resolution (in L_{P})

Linear resolution with Selection function for Definite clauses

- Algorithm

Starts from a set of definite clauses (also the program) + a goal

1) At each step, the selection function identifies a literal in the goal (i.e. subgoal)
2) All definite clause applicable to the subgoal is selected
3) The resolution rule is applied generating the resolvent

Termination: either the empty clause \{ \} is obtained or step 2) fails.

SLD trees (in L_{P})

SLD derivations
Example: $\{C\},\{D\},\{B, \neg D\},\{A, \neg B, \neg C\}$ goal $\{\neg A\}$
In this example each subgoal can be resolved in one mode only This is not true in general

- SLD trees (= trace of all SLD derivations from a goal)

Example: $\{C\},\{D\},\{B, \neg F\},\{B, \neg E\},\{B, \neg D\},\{A, \neg B, \neg C\}$ goal $\{\neg A\}$
A few new rules have been added: there are now different possibilities

$\{\neg A\}$		Selection function: leftmost subgoal first
$\{\neg B, \neg C\}$		
$\{\neg F, \neg C\}$	$\{\neg E, \neg C\}$	$\{\neg D, \neg C\}$
\times	\times	$\{\neg C\}$
\times		$\}$

Each branch correspond to a possible resolution for a subgoal

SLD Resolution (in L_{P})

- A resolution method for Horn clauses in L_{P}

It always terminates
It is correct: $\Gamma \vdash \varphi \Rightarrow \Gamma \models \varphi$
It is complete: $\Gamma \models \varphi \Rightarrow \Gamma \vdash \varphi$

- Computationally efficient

It has polynomial time complexity (w.r.t the \# of propositional symbols occurring in Γ and φ)

- Limitations

Not all problems can be translated into Horn clauses
The "Harry is happy" problem does not translate
Γ : only a set of rules and facts
φ : only a conjunction of facts

Horn Clauses in $L_{F O}$

The definition is very similar to the propositional case

- Horn Clauses (of the skolemization of a set sentences)

Each clause contains at most one literal in positive form

Facts, rules and goals

Fact: a clause with just an individual atom
$\{$ Human(socrates) $\},\{\operatorname{Pyramid}(x)\},\{\operatorname{Sister}($ sally, motherOf(paul)) $\}$
Rule: a clause with at least two literals, exactly one in positive form

```
\(\{\operatorname{Human}(x), \neg \operatorname{Philosopher}(x)\}\),
\(\forall x(\) Philospher \((x) \rightarrow\) Human \((x))\)
\(\{\neg \operatorname{Female}(x), \neg \operatorname{Parent}(k(x), x), \neg \operatorname{Parent}(k(y), y), \operatorname{Sister}(x, y)\}\)
\(\forall x \forall y((\) Female \((x) \wedge \exists z(\operatorname{Parent}(z, x) \wedge \operatorname{Parent}(z, y))) \rightarrow \operatorname{Sister}(x, y))\)
\(\{\neg \operatorname{Above}(x, y), \operatorname{On}(x, k(x))\},\{\neg \operatorname{Above}(x, y), \operatorname{On}(j(y), y)\}\)
\(\forall x \forall y(\operatorname{Above}(x, y) \rightarrow(\exists z \operatorname{On}(x, z) \wedge \exists v \operatorname{On}(v, y)))\)
```

Goal: a clause containing negative literals only

```
\(\{\neg\) Human(socrates) \(\}\)
\(\{\neg \operatorname{Sister}(\) sally,\(x), \neg \operatorname{Sister}(x, p a u l)\}\)
Negation of \(\exists x(\) Sorella(sally,x) \(\wedge\) Sorella(x,paul))
```


SLD Resolution in $L_{F O}$

Linear resolution with Selection function for Definite clauses

- Description

Program (a set of definite clauses: rules + facts):
Rule: $\beta \vee \neg \gamma_{1} \vee \neg \gamma_{2} \vee \ldots \vee \neg \gamma_{n}$
Fact: δ
Goal (a conjunction of facts in negated form:
Goal: $\neg \alpha_{1} \vee \neg \alpha_{2} \vee \ldots \vee \neg \alpha_{k}$

Procedure:

- Starting point: a program Π and a goal ϕ
- The subgoals are considered according to the selection function of choice
- For each subgoal $\neg \alpha_{i}$ the resolution (with unification) is attempted with all rules and facts in Π whose positive literal is compatible

SLD Trees

- Example:

```
\Pi\equiv{{Human(x), \negPhilosopher (x)},{Mortal(y), ᄀHuman(y)},
                                    {Philosopher(socrates)}, {Philosopher(plato)}, {Philosopher(aristotle)}}
goal \equiv{\negMortal(x), \negHuman (x)}
            "Is there anyone who is both human and mortal?"
```

```
                                    goal 1: ᄀMortal(x) []
                                    {\neg\operatorname{Mortal}(x)},{\operatorname{Mortal}(\mp@subsup{y}{1}{}),\neg\operatorname{Human}(\mp@subsup{y}{1}{}),}[]
                                    goal 2: {\negHuman(\mp@subsup{y}{1}{})}[x/\mp@subsup{y}{1}{}]
{\negHuman}(\mp@subsup{y}{1}{})},{\operatorname{Human}(\mp@subsup{x}{1}{}),\neg\operatorname{Philosopher}(\mp@subsup{x}{1}{})}[x/\mp@subsup{y}{1}{}
\{
\[
1-0 l
\]
```

$\left\{\neg\right.$ Philosopher $\left.\left(x_{1}\right)\right\}\{$ Philosopher $($ socrates $)\}[\neg$ Phily $]\left[y_{1} / x_{1}\right] \mid$ $\left\{\neg\right.$ Philosopher $\left.\left(x_{1}\right)\right\}\{$ Philosopher(plato) $\}$ $\left\{\neg\right.$ Philosopher $\left.\left(x_{1}\right)\right\}\{$ Philosopher(aristotle $\left.)\right\}\left[x / y_{1}\right]\left[y_{1} / x_{1}\right]$
$\left\}\left[x / y_{1}\right]\left[y_{1} / x_{1}\right]\left[x_{1} /\right.\right.$ socrates $]$
\{\} $\left[x / y_{1}\right]\left[y_{1} / x_{1}\right]\left[x_{1} /\right.$ plato $]$
\{\} $\left[x / y_{1}\right]\left[y_{1} / x_{1}\right]\left[x_{1} /\right.$ aristotle $]$

SLD Trees

- Another example

```
\Pi\equiv{{Human (x), ᄀPhilosopher (x)},{Mortal(y), ᄀHuman (y)},
    {Philosopher(socrates)}, {Philosopher(plato)}, {Mortal(felix)}}
    goal \equiv{\negMortal(x), \negHuman (x)}
        "Is there anyone who is both human and mortal?"
```


Infinite SLD Trees

- A first example:

$$
\begin{aligned}
& \Pi \equiv\{\{P(x), \neg P(x)\}\} \\
& \neg \phi \equiv\{\neg P(x)\}
\end{aligned}
$$

$$
\begin{gathered}
\text { goal: } \neg P(x)[] \\
\{\neg P(x)\},\left\{P\left(x_{1}\right), \neg P\left(x_{1}\right),\right\}[] \\
\mid \\
\left\{\neg P\left(x_{1}\right)\right\}\left[x / x_{1}\right] \\
\left\{\neg P\left(x_{1}\right)\right\},\left\{P\left(x_{2}\right), \neg P\left(x_{2}\right),\right\}\left[x / x_{1}\right] \\
\{ \\
\left\{\neg P\left(x_{2}\right)\right\}\left[x / x_{1}\right]\left[x_{1} / x_{2}\right] \\
\mid
\end{gathered}
$$

Since $\Pi \not \models \phi$, the method can diverge (and it does...)

Infinite SLD Trees

- A second example:

$$
\begin{aligned}
& \Pi \equiv\{\{P(x), \neg P(x)\},\{P(a)\}\} \\
& \neg \phi \equiv\{\neg P(x)\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { goal: } \neg \mid P(x)[\\
& \left.\{\neg P(x)\},\left\{P\left(x_{1}\right), \neg P\left(x_{1}\right),\right\}[] \quad\{\neg P(x)\}, \underset{\mid}{\{ } \underset{\mid}{ }(a)\right\}[x / a] \\
& \left\{\neg P\left(x_{1}\right)\right\}\left[x / x_{1}\right] \quad\}[x / a] \\
& \left\{\neg P\left(x_{1}\right)\right\},\left\{P\left(x_{2}\right), \neg P\left(x_{2}\right),\right\}\left[x / x_{1}\right] \\
& \left\{\neg P\left(x_{2}\right)\right\} \underset{\mid}{\left.\mid x / x_{1}\right]}\left[x_{1} / x_{2}\right]
\end{aligned}
$$

In this case $\Pi \models \phi$, so the method should not diverge.
However, when a depth-first selection function is used, the infinite branch in the SLD-tree makes the method diverge anyway.
A fair selection function is such that no possible resolution will be postponed indefinitely: that is, any possible resolution will be performed, eventually.

