Artificial Intelligence

Horn Clauses and SLD Resolution

Marco Piastra

Horn Clauses (in L_P)

Definition

A *Horn Clause* is a wff in CF that contains at most <u>one</u> literal in positive form

• Three types of *Horn Clauses*:

Rule: two or more literals, one positive

Examples: {B, $\neg D$, $\neg A$, $\neg C$ }, {A, $\neg B$ }

(equivalent to: $(D \land A \land C) \rightarrow B, B \rightarrow A$)

Facts: just one positive literal

Examples: $\{B\}, \{A\}$

Goal: one or more literals, all negative

Examples: $\{\neg B\}, \{\neg A, \neg B\}$

More terminology:

Rules and facts are also called *definite clauses* Goals are allo called *negative clauses*

Lost in Translation...

Many wffs can be translated into Horn clauses:

$$(A \land B) \rightarrow C$$

$$\neg (A \land B) \lor C$$

$$\neg A \lor \neg B \lor C$$

$$A \rightarrow (B \land C)$$

$$\neg A \lor (B \land C)$$

$$(\neg A \lor B) \land (\neg A \lor C)$$

$$(\neg A \lor B), (\neg A \lor C)$$

$$(\neg A \lor B), (\neg A \lor C)$$

$$(A \lor B) \rightarrow C$$

$$\neg (A \lor B) \lor C$$

$$(\neg A \land \neg B) \lor C$$

$$(\neg A \lor C) \land (\neg B \lor C)$$

$$(\neg A \lor C), (\neg B \lor C)$$

But not all of them:

$$(A \land \neg B) \rightarrow C$$

$$\neg (A \land \neg B) \lor C$$

$$\neg A \lor B \lor C$$

$$A \rightarrow (B \lor C)$$

$$\neg A \lor B \lor C$$

(rewriting \rightarrow) (De Morgan - CF – it is a rule)

(rewriting \rightarrow) (distributing V) (CF - <u>two</u> rules)

(rewriting \rightarrow) (De Morgan) (distributing V) (CF – <u>two</u> rules)

(rewriting \rightarrow) (De Morgan)

 $(rewriting \rightarrow)$

SLD Resolution (in L_P)

Linear resolution with Selection function for Definite clauses

Algorithm

Starts from a set of *definite clauses* (also the *program*) + a *goal*

- 1) At each step, the selection function identifies a literal in the goal (i.e. subgoal)
- 2) All definite clause applicable to the subgoal is selected
- 3) The resolution rule is applied generating the resolvent

Termination: either the empty clause { } is obtained or step 2) fails.

Artificial Intelligence – A.A. 2012–2013

Resolution and Horn clauses [4]

SLD trees (in L_P)

SLD derivations

Example: $\{C\}$, $\{D\}$, $\{B, \neg D\}$, $\{A, \neg B, \neg C\}$ goal $\{\neg A\}$ In this example each subgoal can be resolved in one mode only This is not true in general

SLD trees (= trace of all SLD derivations from a goal)

Example: $\{C\}, \{D\}, \{B, \neg F\}, \{B, \neg E\}, \{B, \neg D\}, \{A, \neg B, \neg C\}$ goal $\{\neg A\}$

A few new rules have been added: there are now different possibilities

Each branch correspond to a possible resolution for a *subgoal*

SLD Resolution (in L_P)

• A resolution method for Horn clauses in L_P

It always terminates It is *correct*: $\Gamma \vdash \varphi \Rightarrow \Gamma \models \varphi$ It is *complete*: $\Gamma \models \varphi \Rightarrow \Gamma \vdash \varphi$

Computationally efficient

It has polynomial time complexity (w.r.t the # of propositional symbols occurring in Γ and φ)

Limitations

Not all problems can be translated into Horn clauses

- The "Harry is happy" problem does not translate
- $\Gamma \ :$ only a set of rules and facts
- φ : only a conjunction of *facts*

Horn Clauses in L_{FO}

The definition is very similar to the propositional case

Horn Clauses (of the skolemization of a set sentences)
 Each clause contains at most one literal in positive form

Facts, rules and goals

Fact: a clause with just an individual atom

{*Human*(socrates)}, {*Pyramid*(x)}, {*Sister*(sally, motherOf(paul))}

Rule: a clause with at least two literals, exactly one in positive form

{*Human*(x), ¬*Philosopher*(x)}, $\forall x (Philospher(<math>x$) \rightarrow *Human*(x))

 $\{\neg Female(x), \neg Parent(k(x), x), \neg Parent(k(y), y), Sister(x, y)\} \\ \forall x \forall y ((Female(x) \land \exists z (Parent(z, x) \land Parent(z, y))) \rightarrow Sister(x, y))$

 $\{\neg Above(x,y), On(x,k(x))\}, \{\neg Above(x,y), On(j(y),y)\} \\ \forall x \forall y (Above(x,y) \rightarrow (\exists z On(x,z) \land \exists v On(v,y)))$

Goal: a clause containing negative literals only

{¬*Human(socrates)*} {¬*Sister(sally,x)*, ¬*Sister(x,paul)*}

Negation of $\exists x (Sorella(sally, x) \land Sorella(x, paul))$

SLD Resolution in L_{FO}

Linear resolution with Selection function for Definite clauses

Description

```
Program (a set of definite clauses: rules + facts):
```

```
Rule: \beta \lor \neg \gamma_1 \lor \neg \gamma_2 \lor \ldots \lor \neg \gamma_n
Fact: \delta
```

Goal (a conjunction of facts in negated form:

```
Goal: \neg \alpha_1 \lor \neg \alpha_2 \lor \ldots \lor \neg \alpha_k
```

Procedure:

- Starting point: a program Π and a goal ϕ
- The subgoals are considered according to the *selection function* of choice
- For each subgoal $\neg \alpha_i$ the resolution (with unification) is attempted with <u>all</u> rules and facts in Π whose positive literal is compatible

SLD Trees

Artificial Intelligence - A.A. 2012-2013

Resolution and Horn clauses [9]

SLD Trees

Another example

 $\Pi \equiv \{ \{Human(x), \neg Philosopher(x)\}, \{Mortal(y), \neg Human(y)\}, \\ \{Philosopher(socrates)\}, \{Philosopher(plato)\}, \{Mortal(felix)\} \}$

 $goal \equiv \{\neg Mortal(x), \neg Human(x)\}$

"Is there anyone who is both human and mortal?"

Infinite SLD Trees

A first example:

 $\Pi \equiv \{ \{ P(x), \neg P(x) \} \}$ $\neg \phi \equiv \{ \neg P(x) \}$

goal:
$$\neg P(x)$$
 []
{ $\neg P(x)$ }, { $P(x_1)$, $\neg P(x_1)$,} []
{ $\neg P(x_1)$ } [x/x_1]
[$\neg P(x_1)$ }, { $P(x_2)$, $\neg P(x_2)$,} [x/x_1]
{ $\neg P(x_2)$ } [x/x_1] [x_1/x_2]

. . .

Since $\Pi \not\models \phi$, the method can *diverge* (and it does...)

Infinite SLD Trees

• A second example: $\Pi \equiv \{\{P(x), \neg P(x)\}, \{P(a)\}\} \}$ $\neg \phi \equiv \{\neg P(x)\}$

In this case $\Pi \models \phi$, so the method should *not* diverge.

However, when a *depth-first* selection function is used, the infinite branch in the SLD-tree makes the method diverge anyway.

A **fair** selection function is such that no possible resolution will be postponed indefinitely: that is, <u>any</u> possible resolution will be performed, eventually.