Artificial Intelligence

Semi-Decidability of First-Order Logic

Marco Piastra

Decidability and automation of $L_{F O}$

- $L_{F O}$ is not decidable

No Turing machine can tell whether $\Gamma \models \varphi$
Are there any hopes for automating the calculus?

- $L_{F O}$ is semi-decidable (Herbrand, 1930)

A Turing machine can tell (in finite time) that
$\Gamma \models \varphi$
... but not that

$$
\Gamma \not \models \varphi
$$

In other words, the above Turing machine, when facing the problem " $\Gamma \vDash \varphi$?" :

1) it will terminate with success if $\Gamma \vDash \varphi$
2) it might diverge if $\Gamma \not \vDash \varphi$

Herbrand's System

Given a universal sentence of the form:

$$
\forall x_{1} \forall x_{2} \ldots \forall x_{n} \varphi \quad \text { (where } \varphi \text { does not contain quantifiers) }
$$

the Herbrand's System is the set (possibly infinite) of ground wffs generated by replacing the variables

A ground term or wff

$$
\varphi\left[x_{1} / t_{1}, x_{2} / t_{2} \ldots x_{n} / t_{n}\right]
$$

with all possible combinations of ground terms $\left.<t_{1}, t_{2} \ldots t_{n}\right\rangle$ of the signature Σ

Examples:

$$
\begin{aligned}
& \mathrm{H}(\forall x P(x) \rightarrow Q(x)))=\{P(f(a)) \rightarrow Q(f(a)), P(g(a, b)) \rightarrow Q(g(a, b)), \ldots\} \\
& \mathrm{H}(\forall x \forall y R(x, y))=\{R(f(a), f(a)), R(g(a, b), f(a)), R(f(a), g(a, b)), \ldots\}
\end{aligned}
$$

- Herbrand's System of a theory

Given a theory Φ of universal sentences, the Herbrand's system $\mathrm{H}(\Phi)$
is the union of all Herbrand's systems of the sentences in Φ

```
Example:
\Phi={\varphi,\psi,\chi}
H(\Phi)=H(\psi)\cupH(\varphi)\cupH(\chi)
```


Herbrand's Theorem

- Herbrand's Theorem

Given a theory of universal sentences Φ,
$H(\Phi)$ has a model iff Φ has a model
... but what is the utility of that?
$\mathrm{H}(\Phi)$ may well be infinite even when Φ is finite,
Furthermore, the theorem applies only to sets of universal sentences...

Prenex normal form (PNF)

Any wff φ can be transformed into an equivalent formula of the form

$$
\mathrm{Q}_{1} x_{1} \mathrm{Q}_{2} x_{2} \ldots \mathrm{Q}_{n} x_{n} \psi \quad(\psi \text { is called the matrix })
$$

where Q_{i} is either \forall or \exists and ψ does not contain quantifiers
Equivalences:

$$
\begin{array}{ll}
\vDash(\neg \forall x \varphi) \leftrightarrow(\exists x \neg \varphi) & \vDash(\neg \exists x \varphi) \leftrightarrow(\forall x \neg \varphi) \\
\vDash((\forall x \varphi) \wedge \psi) \leftrightarrow(\forall x(\varphi \wedge \psi)) & \vDash((\exists x \varphi) \wedge \psi) \leftrightarrow(\exists x(\varphi \wedge \psi)) \\
\vDash((\forall x \varphi) \vee \psi) \leftrightarrow(\forall x(\varphi \vee \psi)) & \vDash((\exists x \varphi) \vee \psi) \leftrightarrow(\exists x(\varphi \vee \psi)) \\
\vDash(\varphi \rightarrow(\forall x \psi)) \leftrightarrow(\forall x(\varphi \rightarrow \psi)) & \vDash(\varphi \rightarrow(\exists x \psi)) \leftrightarrow(\exists x(\varphi \rightarrow \psi))
\end{array}
$$

However:

$$
\vDash((\forall x \varphi) \rightarrow \psi) \leftrightarrow(\exists x(\varphi \rightarrow \psi)) \quad \vDash((\exists x \varphi) \rightarrow \psi) \leftrightarrow(\forall x(\varphi \rightarrow \psi))
$$

Caution: variables MUST be renamed, when required, in order to avoid clashes

Examples: $\exists y(P(y) \rightarrow \forall x P(x))$

$$
\exists y \forall x(P(y) \rightarrow P(x))
$$

$$
\exists y(\forall x P(x) \rightarrow P(y))
$$

$$
\exists y \exists x(P(x) \rightarrow P(y))
$$

$$
\forall x \exists y(Q(x, y) \rightarrow P(y)) \wedge \neg \forall x P(x)
$$

$$
\forall x \exists y(Q(x, y) \rightarrow P(y)) \wedge \exists x \neg P(x)
$$

$$
\forall x \exists y(Q(x, y) \rightarrow P(y)) \wedge \exists z \neg P(z)
$$

$$
\forall x \exists y \exists z((Q(x, y) \rightarrow P(y)) \wedge \neg P(z))
$$

```
(PNF, using (\varphi->(\forallx\psi))\leftrightarrow(\forallx(\varphi->\psi)))
(PNF, using ((\forallx\varphi)->\psi)\leftrightarrow(\existsx(\varphi->\psi))
(Using (\neg\forallx\varphi)\leftrightarrow(\existsx\neg\varphi))
(substitution [x/z])
(PNF)
```


Skolemization

In a sentence in PNF, existential quantifiers can be eliminated by extending the signature Σ of the language

Consider a sentence in PNF $\mathrm{Q}_{1} x_{1} \mathrm{Q}_{2} x_{2} \ldots \mathrm{Q}_{n} x_{n} \psi$
From left to right, for each $\mathrm{Q}_{i} x_{i}$ of type $\exists x_{i}$:

- Apply to ψ the substitution $\left[x_{i} / k\left(x_{1}, \ldots, x_{j}\right)\right]$
where k is a new function and x_{1}, \ldots, x_{j} are the variables of j the universal quantifiers that come before $\exists x_{i} \quad(k$ is an individual constant if $j=0$)
- $\exists x_{i}$ is simply removed

Examples:

$\exists y \forall x(P(y) \rightarrow P(x))$
$\forall x(P(k) \rightarrow P(x)) \quad$ (k Skolem's constant)
$\forall x \exists y \exists z((Q(x, y) \rightarrow P(y)) \wedge \neg P(z))$
$\forall x((Q(x, k(x)) \rightarrow P(k(x))) \wedge \neg P(m(x))) \quad$ ($k / 1$ and $m / 1$ Skolem's functions)

- Theorem

For any sentence φ,
φ has a model iff $\operatorname{sko}(\varphi)$ (i.e. Skolemization of φ) has a model

Semi-decidability of $L_{P O}$

- Corollary of Herbrand's theorem

These three statements are equivalent:

- $\quad \Gamma \models \varphi$
- $\Gamma \cup\{\neg \varphi\}$ is not satisfiable (= it has no model)
- There exist a finite subset
of $\mathrm{H}(\operatorname{sko}(\Gamma \cup\{\neg \varphi\}))$ (= Herbrand's system of the Skolemitazion of $\Gamma \cup\{\neg \varphi\})$ that is inconsistent
Therefore:
When $\Gamma \models \varphi$, a procedure that generates the finite subsets of $\mathrm{H}(\operatorname{sko}(\Gamma \cup\{\neg \varphi\}))$ will certainly discover a contradiction (in finite time)

