Artificial Intelligence

Semi-Decidability of First-Order Logic

Marco Piastra

Decidability and automation of L_{FO}

L_{FO} is <u>not</u> decidable

No Turing machine can tell whether $\Gamma\models\varphi$

Are there any hopes for automating the calculus?

• L_{FO} is **semi-decidable** (Herbrand, 1930) A Turing machine can tell (in *finite* time) that $\Gamma \models \varphi$... but <u>not</u> that

 $\Gamma \not\models \varphi$

In other words, the above Turing machine, when facing the problem " $\Gamma \models \varphi$?":

1) it will terminate with success if $\Gamma \models \varphi$

2) it <u>might</u> diverge if $\Gamma \not\models \varphi$

Herbrand's System

Given a universal sentence of the form:

 $\forall x_1 \forall x_2 \dots \forall x_n \varphi$ (where φ does not contain quantifiers)

the *Herbrand's System* is the set (possibly *infinite*) of *ground* wffs generated by replacing the variables A ground term or wff

 $\varphi[x_1/t_1, x_2/t_2 \dots x_n/t_n]$ does not contain variables

with all possible combinations of *ground* terms $< t_1, t_2 \dots t_n >$ of the *signature* Σ

Examples:

$$\begin{split} & \mathsf{H}(\forall x \ P(x) \rightarrow Q(x))) = \{P(f(a)) \rightarrow Q(f(a)), P(g(a, b)) \rightarrow Q(g(a, b)), \dots \} \\ & \mathsf{H}(\forall x \ \forall y \ R(x, y)) = \{R(f(a), f(a)), R(g(a, b), f(a)), R(f(a), g(a, b)), \dots \} \end{split}$$

Herbrand's System of a theory

Given a theory Φ of universal sentences, the Herbrand's system ${\rm H}(\Phi)$ is the union of all Herbrand's systems of the sentences in Φ

Example:

 $\Phi = \{\varphi, \psi, \chi\}$ H(Φ) = H(ψ) \cup H(φ) \cup H(χ)

Herbrand's Theorem

Herbrand's Theorem

Given a theory of universal sentences Φ , $H(\Phi)$ has a model iff Φ has a model

... but what is the utility of that? $H(\Phi)$ may well be infinite even when Φ is finite, Furthermore, the theorem applies only to sets of <u>universal</u> sentences...

Prenex normal form (PNF)

Any wff φ can be transformed into an equivalent formula of the form

 $Q_1 x_1 Q_2 x_2 \dots Q_n x_n \psi$ (ψ is called the **matrix**) where Q_i is either \forall or \exists and ψ does not contain quantifiers Equivalences:

$$\begin{aligned} &\models (\neg \forall x \, \varphi) \leftrightarrow (\exists x \, \neg \varphi) &\models (\neg \exists x \, \varphi) \leftrightarrow (\forall x \, \neg \varphi) \\ &\models ((\forall x \, \varphi) \land \psi) \leftrightarrow (\forall x \, (\varphi \land \psi)) &\models ((\exists x \, \varphi) \land \psi) \leftrightarrow (\exists x \, (\varphi \land \psi)) \\ &\models ((\forall x \, \varphi) \lor \psi) \leftrightarrow (\forall x \, (\varphi \lor \psi)) &\models ((\exists x \, \varphi) \lor \psi) \leftrightarrow (\exists x \, (\varphi \lor \psi)) \\ &\models (\varphi \rightarrow (\forall x \, \psi)) \leftrightarrow (\forall x \, (\varphi \rightarrow \psi)) &\models (\varphi \rightarrow (\exists x \, \psi)) \leftrightarrow (\exists x \, (\varphi \rightarrow \psi)) \end{aligned}$$

However:

$$\models ((\forall x \, \varphi) \to \psi) \leftrightarrow (\exists x \, (\varphi \to \psi)) \quad \models ((\exists x \, \varphi) \to \psi) \leftrightarrow (\forall x \, (\varphi \to \psi))$$

Caution: variables MUST be renamed, when required, in order to avoid clashes

Examples: $\exists y (P(y) \rightarrow \forall x P(x)) \\ \exists y \forall x (P(y) \rightarrow P(x)) \end{pmatrix}$ (PNF, using $(\varphi \rightarrow (\forall x \psi)) \leftrightarrow (\forall x (\varphi \rightarrow \psi)))$ $\exists y (\forall x P(x) \rightarrow P(y)) \\ \exists y \exists x (P(x) \rightarrow P(y)) \end{pmatrix}$ (PNF, using $((\forall x \varphi) \rightarrow \psi) \leftrightarrow (\exists x (\varphi \rightarrow \psi))$ $\forall x \exists y (Q(x,y) \rightarrow P(y)) \land \neg \forall x P(x) \\ \forall x \exists y (Q(x,y) \rightarrow P(y)) \land \exists x \neg P(x) \end{pmatrix}$ (Using $(\neg \forall x \varphi) \leftrightarrow (\exists x \neg \varphi)$) $\forall x \exists y (Q(x,y) \rightarrow P(y)) \land \exists z \neg P(z) \end{pmatrix}$ (substitution [x/z]) $\forall x \exists y \exists z ((O(x,y) \rightarrow P(y)) \land \neg P(z)) \end{pmatrix}$ (PNF)

Semi-Decidability of First-Order Logic [5]

Skolemization

In a sentence in PNF, existential quantifiers can be eliminated by extending the signature Σ of the language

Consider a sentence in PNF $Q_1x_1Q_2x_2 \dots Q_nx_n\psi$ From left to right, for each Q_ix_i of type $\exists x_i$:

- Apply to ψ the substitution $[x_i/k(x_1, ..., x_j)]$ where k is a <u>new</u> function and $x_1, ..., x_j$ are the variables of j the universal quantifiers that come before $\exists x_i$ (k is an individual constant if j = 0)
- $\exists x_i$ is simply removed

Examples:

 $\begin{aligned} \exists y \; \forall x \; (P(y) \to P(x)) \\ \forall x \; (P(k) \to P(x)) \end{aligned} \\ \forall x \; \exists y \; \exists z \; ((Q(x,y) \to P(y)) \land \neg P(z)) \\ \forall x \; ((Q(x,k(x)) \to P(k(x))) \land \neg P(m(x))) \end{aligned}$

(k Skolem's constant)

(k/1 and m/1 Skolem's functions)

Theorem

For any sentence φ ,

 φ has a model iff $sko(\varphi)$ (i.e. Skolemization of φ) has a model

Semi-decidability of L_{PO}

Corollary of Herbrand's theorem

These three statements are equivalent:

- $\Gamma \models \varphi$
- $\Gamma \cup \{\neg \varphi\}$ is not satisfiable (= it has no model)
- There exist a *finite* subset of H(sko(Γ ∪ {¬φ})) (= Herbrand's system of the Skolemitazion of Γ ∪ {¬φ}) that is *inconsistent*

Therefore:

When $\Gamma \models \varphi$, a procedure that generates the finite *subsets* of H(*sko*($\Gamma \cup \{\neg \varphi\}$)) will certainly discover a contradiction (*in finite time*)