Artificial Intelligence

First-Order Logic

Marco Piastra

<u>Propositional</u> possible worlds

Each possible world is a structure <{0,1}, *P*, *v*>

 $\{0,1\}$ are the *truth values*

P is the **signature** of the formal language: a set of propositional symbols

v is a *function*: $P \rightarrow \{0,1\}$ assigning truth values to the symbols in P

Propositional symbols (signature)

Each symbol in *P* stands for an actual *proposition* (in natural language) In the simple convention, we use the symbols *A*, *B*, *C*, *D*, ... Caution: *P* is not necessarily *finite*

Possible worlds

The class of structures contains all possible worlds:

 $< \{0,1\}, P, v > < \{0,1\}, P, v' > < \{0,1\}, P, v' > < \{0,1\}, P, v'' >$

•••

Each class of structure shares P and $\{0,1\}$

The functions v are different: the assignment of truth values varies, depending on the possible world

If P is finite, there are only *finitely* many distinct possible worlds (actually $2^{|P|}$)

<u>First-order</u> possible worlds

Possible worlds made of objects, functions and relations

Each possible world is a structure $\langle U, \Sigma, v \rangle$

U is a set of object, called *domain* (also *universe of discourse*)

 Σ is a set of symbols, called *signature*

v is a *function* that gives a *meaning* to the symbol in Σ with respect to \mathbf{U}

Signature Σ

- *individual constants*. *a*, *b*, *c*, *d*, ...
- function symbols (with <u>arity</u>): f /n, g /p, h /q, ...
- predicate symbols (with <u>arity</u>): P /k, Q /l, R /m, ...

<u>Arity</u> is an integer number that describes the expected number of arguments

<u>First-order</u> possible worlds

Possible worlds made of objects, functions and relations

Each possible world is a structure $\langle U, \Sigma, v \rangle$

U is a set of object, called *domain* (also *universe of discourse*)

 $\boldsymbol{\Sigma}$ is a set of symbols, called $\boldsymbol{\textit{signature}}$

v is a *function* that gives a *meaning* to the symbol in Σ with respect to \mathbf{U}

Term

A single *individual constant* is a **term** If f/n is a *functional symbol* (with arity n) and $t_1, ..., t_n$ are **terms**, then $f(t_1, ..., t_n)$ is a **term**

Atom

If *P* /*n* is a *predicate symbol* (with arity *n*) and $t_1, ..., t_n$ are **terms**, then $P(t_1, ..., t_n)$ is an **atom** (i.e a first-order well-formed formula – wff)

<u>First-order</u> possible worlds

Possible worlds made of objects, functions and relations

Each possible world is a structure $\langle U, \Sigma, v \rangle$

U is a set of object, called *domain* (also *universe of discourse*)

 $\boldsymbol{\Sigma}$ is a set of symbols, called $\boldsymbol{\textit{signature}}$

v is a *function* that gives a *meaning* to the symbol in Σ with respect to \mathbf{U}

Function *v* (*interpretation*)

- v assigns each *individual constant* to an *object* in U $v(a) \in U$ (a individual constant)
- v assigns each *functional symbol* a *function* defined on U $v(f/n) : U^n \rightarrow U$ (f/n functional symbol)
- v assigns each *predicate symbol* a *relation* defined on U $v(P/m) \subseteq U^m (P/n \text{ predicate symbol})$

Say it with atoms

Domain \mathbf{U}

Objects: { <u>a</u>, <u>b</u>, <u>c</u>, <u>d</u>, <u>e</u>, <u>green</u>, <u>orange</u>, <u>red</u>, <u>rose</u>, <u>violet</u> }

Signature Σ

Individual constants: *a*, *b*, *c*, *d*, *e*, *green*, *orange*, *red*, *rose*, *violet* Function symbols: *colorOf/*1

Obiects in ${f U}$ are underlined constant symbols in ${f \Sigma}$ are not

e

b

Predicate symbols: Pyramid/1, Parallelepiped/1, Sphere/1, Ontable/1, Clear/1, Above/2, =/2

How does $\langle U, \Sigma, v \rangle$ satisfy a set of atoms:

 $\langle \mathbf{U}, \Sigma, v \rangle \models (colorOf(a) = green), (colorOf(b) = orange), (colorOf(c) = red), (colorOf(d) = rose)$

 $\langle \mathbf{U}, \Sigma, v \rangle \models Above(a,b), Above(b,c), Above(a,c), Above(d,e)$

Say it with atoms

Different possible worlds (only interpretation functions v change, in this example)

 $<\mathbf{U}, \Sigma, v_1 > \models Pyramid(a), Parallelepiped(b), Parallelepiped(c), Sphere(d), Parallelepiped(e), (colorOf(a) = green), (colorOf(b) = orange), (colorOf(c) = red), (colorOf(d) = rose), (colorOf(e) = violet) \\ Ontable(c), Ontable(e), Clear(a), Clear(d) \\ Above(a,b), Above(b,c), Above(a,c), Above(d,e) \end{aligned}$

 $<\mathbf{U}, \Sigma, v_{2} > \models Parallelepiped(a), Parallelepiped(b), Parallelepiped(c), Sphere(d), Pyramid(e), (colorOf(a) = red), (colorOf(b) = violet), (colorOf(c) = pink), (colorOf(d) = green), (colorOf(e) = orange) Ontable(a), Ontable(c), Ontable(e), Clear(a), , Clear(b), Clear(d) Above(b,c), Above(d,e) a$

$$< \mathbf{U}, \Sigma, v_{3} > \models Pyramid(a), Parallelepiped(b), Parallelepiped(c), Parallelepiped(e) \\ Sphere(d) \\ (colorOf(a) = green), (colorOf(b) = orange), (colorOf(c) = red), \\ (colorOf(d) = rose), (colorOf(e) = violet) \\ Ontable(c), Ontable(e), Clear(a), Clear(d) \\ Above(a,b), Above(b,c), Above(a,c), Above(d,e) \\ \end{cases}$$

Artificial Intelligence - A.A. 2012-2013

Abstraction: variables and quantifiers

(just <u>intuitive</u> semantics, for now)

More general properties $\neg \forall x \exists y (Above(x,y))$ $\neg \forall y \exists x (Above(x,y))$

Defining *new* predicates $\forall x \forall y (On(x,y) \leftrightarrow (Above(x,y) \land \neg \exists z (Above(x,z) \land Above(z,y)))$ $\forall x (Ontable(x) \leftrightarrow \neg \exists z Above(x,z))$ $\forall x (Clear(x) \leftrightarrow \neg \exists z Above(z,x))$

Abstraction: variables and quantifiers

- "Being brothers means being relatives" $\forall x \forall y \ (Brother(x, y) \rightarrow Relative(x, y))$
- "Being relative is a symmetric relation" $\forall x \forall y \ (Relative(x, y) \leftrightarrow Relative(y, x))$
- "By definition, being mother is being parent and female" $\forall x (Mother(x) \leftrightarrow (\exists y Parent(x, y) \land Female(x)))$
- "A cousin is a son of either a brother or a sister of either parents" $\forall x \forall y (Cousin(x,y))$

 $\leftrightarrow \exists z \exists w \ (Parent(z, x) \land Parent(w, y) \land (Brother(z, w) \lor Sister(z, w))))$

• "Everyone has a mother"

 $\forall x \exists y Mother(y, x)$

BE CAREFUL about the order of quantifiers, in fact:

 $\exists y \forall x Mother(y, x)$

"There is one (common) mother to everyone"

First-order language

Well-formed formulae (wff)

Starting from a *signature* Σ , add *variables* x, y, z ... and allow variables in *terms:* A single *individual constant* or a *variable* is a **term** If f/n is a *functional symbol* (with arity n) and $t_1, ..., t_n$ are **terms**, then $f(t_1, ..., t_n)$ is a **term**

The definition of *atoms* remains unchanged

Every *atom* composed from Σ and the variables is a wff(L_{PO})

```
\begin{split} \varphi &\in \operatorname{wff}(L_{PO}) \Rightarrow (\neg \varphi) \in \operatorname{wff}(L_{PO}) \\ \varphi, \psi &\in \operatorname{wff}(L_{PO}) \Rightarrow (\varphi \to \psi) \in \operatorname{wff}(L_{PO}) \\ \varphi &\in \operatorname{wff}(L_{PO}) \Rightarrow (\forall x \, \varphi) \in \operatorname{wff}(L_{PO}) \\ \varphi, \psi &\in \operatorname{wff}(L_{PO}), \qquad (\varphi \lor \psi) \Leftrightarrow ((\neg \varphi) \to \psi) \\ \varphi, \psi &\in \operatorname{wff}(L_{PO}), \qquad (\varphi \land \psi) \Leftrightarrow (\neg (\varphi \to (\neg \psi))) \\ \varphi, \psi &\in \operatorname{wff}(L_{PO}), \qquad (\varphi \leftrightarrow \psi) \Leftrightarrow ((\varphi \to \psi) \land (\psi \to \varphi)) \\ \varphi &\in \operatorname{wff}(L_{PO}), \qquad (\exists x \, \varphi) \Leftrightarrow (\neg \forall x \neg \varphi) \end{split}
```

Open formulae, sentences

Bound and free variables

The occurrence of a *variable* in a wff is **bound** if it lies in the scope of a quantifier (for that *variable*)

The occurrence of a *variable* in a wff is *free* if it is not *bound*

Examples of bound variables: $\forall x \ P(x)$ $\exists x \ (P(x) \rightarrow (A(x) \land B(x)))$ Examples of free variables: P(x) $\exists y \ (P(y) \rightarrow (A(x,y) \land B(y)))$

Open and closed formulae

A wff is **open** if there is at least one free occurrence of a variable

Otherwise, the wff is *closed* (also called *sentence*)

Only *closed* wffs, i.e. *sentences*, have a truth value (see after)

Possible worlds, interpretations, valuation

Possible world: a structure <U, Σ, ν>

U is a set of object, called *domain* (also *universe of discourse*) Σ is a set of symbols, called *signature*

- v is a *function* that:
- v assigns each *individual constant* to an *object* in U $v(a) \in U$ (a individual constant)
- v assigns each *functional symbol* a *function* defined on U $v(f/n) : U^n \rightarrow U$ (*f*/*n* functional symbol)
- v assigns each *predicate symbol* a *relation* defined on U $v(P/m) \subseteq U^m$ (P/n predicate symbol) Function v does not assign a value to <u>variables</u>
- Valuation (of <u>variables</u>): a function s

Given a possible world $\langle \mathbf{U}, \Sigma, v \rangle$, a *valuation s* is a *function* that assigns at each *variable x* an *object* in \mathbf{U} $s(x) \in \mathbf{U}$

Satisfaction

• Given a possible world $\langle \mathbf{U}, \Sigma, v \rangle$ and a valuation *s* If φ is an *atom* (i.e. φ has the form $P(t_1, ..., t_n)$) $\langle \mathbf{U}, \Sigma, v \rangle [s] \models \varphi$ iff $\langle v(t_1) [s], ..., v(t_n) [s] \rangle \in v(P) [s]$

```
If \varphi \in \psi are wffs
```

```
\langle \mathbf{U}, \Sigma, v \rangle [s] \models (\neg \varphi) iff\langle \mathbf{U}, \Sigma, v \rangle [s] \not\models \varphi\langle \mathbf{U}, \Sigma, v \rangle [s] \models (\varphi \land \psi) iff\langle \mathbf{U}, \Sigma, v \rangle [s] \models \varphi AND \langle \mathbf{U}, \Sigma, v \rangle [s] \models \psi\langle \mathbf{U}, \Sigma, v \rangle [s] \models (\varphi \lor \psi) iff\langle \mathbf{U}, \Sigma, v \rangle [s] \models \varphi OR \langle \mathbf{U}, \Sigma, v \rangle [s] \models \psi\langle \mathbf{U}, \Sigma, v \rangle [s] \models (\varphi \lor \psi) iffNOT \langle \mathbf{U}, \Sigma, v \rangle [s] \models \varphi OR \langle \mathbf{U}, \Sigma, v \rangle [s] \models \psi
```

Quantified formulae

 $\langle \mathbf{U}, \Sigma, v \rangle [s] \models \forall x \varphi \text{ iff}$

 $\langle \mathbf{U}, \Sigma, v \rangle [s] \models \exists x \varphi \text{ iff}$

FORALL $\underline{d} \in \mathbf{U}$ we have $\langle \mathbf{U}, \Sigma, v \rangle [s](x:\underline{d}) \models \varphi$ it EXISTS $\underline{d} \in \mathbf{U}$ such that $\langle \mathbf{U}, \Sigma, v \rangle [s](x:\underline{d}) \models \varphi$

Where $[s](x:\underline{d})$ is the *variant* of function *s* that assigns \underline{d} to *x* and remains unaltered for any other variables.

Models

Validity in a possible world, model

A wff φ such that $\langle \mathbf{U}, \Sigma, v \rangle [s] \models \varphi$ for any *valuation* s is **valid** in $\langle \mathbf{U}, \Sigma, v \rangle$

<U, Σ , v> is also a **model** of φ

and we write $\langle \mathbf{U}, \Sigma, v \rangle \models \varphi$ (i.e. the reference to *s* can be omitted)

A possible world $\langle \mathbf{U}, \Sigma, v \rangle$ is a **model** of a *set* of wff Γ iff it is a model for all the wffs in Γ

and we write $\langle \mathbf{U}, \Sigma, v \rangle \models \Gamma$

Truth

A sentence ψ is true in $\langle U, \Sigma, v \rangle$ if it is valid in $\langle U, \Sigma, v \rangle$

Validity in general

Validity and logical truth

```
A wff (either open or closed) is valid (also logically valid) if it is valid in any possible world \langle U, \Sigma, v \rangle
```

```
Example:
```

```
(P(x) \lor \neg P(x))
```

```
A sentence \psi is a logical truth
if it is true in any possible world \langle \mathbf{U}, \Sigma, v \rangle
we write then \models \psi (i.e. no reference to \langle \mathbf{U}, \Sigma, v \rangle)
Examples:
\forall x (P(x) \lor \neg P(x))
\forall x \forall y (G(x,y) \rightarrow (H(x,y) \rightarrow G(x,y)))
```

Inconsistence

A wff (either open or closed) is **inconsistent** if its not *satisfiable* Example: $\forall x (P(x) \land \neg P(x))$

Entailment

Definition

Given a set of wffs Γ and one wff φ , we have $\Gamma \models \varphi$ iff all the combinations $\langle \mathbf{U}, \Sigma, v \rangle [s]$ satisfying Γ also satisfy φ

This definition embraces all possible combinations $\langle U, \Sigma, v \rangle [s]$ The only thing that does not vary is the language Σ

In general, a direct calculus of entailment is impossible...

*Say it with function or predicates?

Semantically, functions and predicates are very similar to each other: can we get rid of functions at all?

Functions are *relations*

Hence they can be *represented* via predicates For instance, the two sentences:

 $\forall x \forall y \forall z ((\varphi(x,y) \land \varphi(x,z)) \rightarrow (y=z))$

 $\forall x \exists y \, \varphi(x, y)$

say altogether that the meaning of $\varphi(..)$ (i.e. a relation $v(\varphi) \subseteq U^2$) is also a *function* $U \rightarrow U$

But only functions can be nested in terms

Therefore, functions allow for a much greater expressive power (*which will reflect into a much greater difficulty in calculus* ...)

*Many-sorted or nil? (just for computer scientists)

green, colorOf(green), colorOf(colorOf(green)), colorOf(colorOf(colorOf(green))) All these terms are syntactically correct, although they do not make that much sense...

For practical applications, functions should be restricted to given *types* (i.e. *sort*)

The type should be made explicit for each function and predicate symbols (besides arity)

Convenience of *nil*

A particular constant: *nil* which has the conventional interpretation of a *non-object* This gives an alternative for otherwise meaningless definitions: $(colorOf(a) = green) \land (colorOf(green) = nil)$ And for particular cases as well: $Above(a,b) \land Above(b,c) \land Above(c,nil)$ a

b

d

e