Artificial Intelligence

Propositional Resolution

Marco Piastra

Deductive systems and automation

- Is problem $\Gamma \vdash \varphi$ decidible?

A deductive system 'a la Hilbert' (i.e. derivation using axiom schemas and MP) does not translate into an algorithm

```
In fact, when trying to find a demonstration of }\Gamma\vdash\varphi\mathrm{ :
    We can use all }\psi\in\Gamma (if \Gamma is finite
        (OK)
    We can apply the inference rule MP whenever possible (OK)
    We cannot generate all axiom instances from Axn (KO)
```

Moral: the problem is the infinite set of axioms

Resolution rule

(Just another inference rule)

$$
\varphi \vee \chi, \neg \chi \vee \psi \vdash \varphi \vee \psi
$$

$\varphi \vee \psi$ is also called the resolvent of $\varphi \vee \chi$ e $\neg \chi \vee \psi$

The resolution rule is correct

φ	ψ	χ	$\varphi \vee \chi$	$\neg \chi \vee \psi$	$\varphi \vee \psi$
0	0	0	0	1	0
0	0	1	1	0	0
0	1	0	0	1	1
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	0	1
1	1	0	1	1	1
1	1	1	1	1	1

$$
\chi \rightarrow \psi, \chi \vdash \psi \text { can be rewritten as } \chi, \neg \chi \vee \psi \vdash \psi
$$

Normal forms

= translation of each wff into an equivalent wff having a specific structure

- Conjunctive Normal Form (CNF)

A wff with a structure

$$
\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n}
$$

where each α_{i} has a structure

$$
\left(\beta_{1} \vee \beta_{2} \vee \ldots \vee \beta_{n}\right)
$$

where each β_{j} is a literal (i.e. an atomic symbol or the negation of an atomic symbol)
Examples:

$$
\begin{aligned}
& (B \vee D) \wedge(A \vee \neg C) \wedge C \\
& (B \vee \neg A \vee \neg C) \wedge(\neg D \vee \neg A \vee \neg C)
\end{aligned}
$$

- Disjunctive Normal Form (DNF)

A wff with a structure

$$
\beta_{1} \vee \beta_{2} \vee \ldots \vee \beta_{n}
$$

where each β_{i} has a structure

$$
\left(\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n}\right)
$$

where each α_{j} is a literal

Conjunctive Normal Form

- Translation into CNF (it can be automated)

Exhaustive application of the following rules:

1) Rewrite \rightarrow and \leftrightarrow using \wedge, \vee, \neg
2) Move \neg inside composite formulae

$$
\begin{array}{ll}
\text { "De Morgan laws": } & \neg(\varphi \wedge \psi) \equiv(\neg \varphi \vee \neg \psi) \\
& \neg(\varphi \vee \psi) \equiv(\neg \varphi \wedge \neg \psi)
\end{array}
$$

3) Eliminate double negations: $\neg \neg$
4) Distribute V

$$
((\varphi \wedge \psi) \vee \chi) \equiv((\varphi \vee \chi) \wedge(\psi \vee \chi))
$$

Examples:

$$
\left.\left.\begin{array}{ll}
(\neg B \rightarrow D) \vee \neg(A \wedge C) & \\
& B \vee D \vee \neg(A \wedge C) \\
& \text { (rewrite } \rightarrow) \\
B \vee D \vee \neg A \vee \neg C & \text { (De Morgan) } \\
& \\
& (B \rightarrow D) \vee \neg(A \wedge C) \\
& \neg(\neg B \vee D) \vee \neg(A \wedge C)
\end{array}\right) \text { (rewrite } \rightarrow\right) \text { (De Morgan) }
$$

Clausal Forms

= each wff is translated into an equivalent set of wffs having a specific structure

- Clausal Form (CF)

Starting from a wff in CNF

$$
\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n}
$$

the clausal form is simply the set of all clauses

$$
\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}
$$

Examples:

$$
\begin{aligned}
& (B \vee D) \wedge(A \vee \neg C) \wedge C \\
& \{(B \vee D),(A \vee \neg C), C\}
\end{aligned}
$$

- Special notation

Each clause is usually written as a set

$$
\begin{aligned}
& \beta_{1} \vee \beta_{2} \vee \ldots \vee \beta_{n} \\
& \left\{\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right\}
\end{aligned}
$$

Example:

$$
\{\{B, D\},\{A, \neg C\},\{C\}\} \quad \begin{aligned}
& \text { A set of literals: } \\
& \text { ordering is irrelevant } \\
& \text { no multiple copies }
\end{aligned}
$$

Resolution by refutation

- Algorithm

Problem: " $\Gamma \vdash \varphi$ " ?

The problem is transformed into: is " $\Gamma \cup\{\neg \varphi\}$ " coherent?
If $\Gamma \vdash \varphi$ then $\Gamma \cup\{\neg \varphi\}$ is incoherent and therefore a contradiction can be derived
$\Gamma \cup\{\neg \varphi\}$ is translated into CNF hence in CF
The resolution algorithm is applied to the set of clauses $\Gamma \cup\{\neg \varphi\}$

At each step:

a) Select a pair of clauses $\left\{C_{1}, C_{2}\right\}$ containing a pair of complementary literals making sure that this combination has never been selected before
b) Compute C as the resolvent of $\left\{C_{1}, C_{2}\right\}$ according to the resolution rule.
c) Add C to the set of clauses

Termination:
When C is the empty clause \{ \}
or there are no more combinations to be selected in step a)

Advantages:

No axioms. Only one operation (i.e. the resolution rule). It is a native algorithm

Resolution by refutation

- The same example as before

$$
B \vee D \vee \neg A \vee \neg C, B \vee C, A \vee D, \neg B \vdash D
$$

Refutation + rewrite in CNF:

$$
B \vee D \vee \neg A \vee \neg C, B \vee C, A \vee D, \neg B, \neg D
$$

Rewrite in CF:

$$
\{B, D, \neg A, \neg C\},\{B, C\},\{A, D\},\{\neg B\},\{\neg D\}
$$

Applying the resolution rule:

Resolution by refutation

- The same example as before

$$
B \vee D \vee \neg A \vee \neg C, B \vee C, A \vee D, \neg B \vdash D
$$

Refutation + rewrite in CNF:

$$
B \vee D \vee \neg A \vee \neg C, B \vee C, A \vee D, \neg B, \neg D
$$

Rewrite in CF:

$$
\{B, D, \neg A, \neg C\},\{B, C\},\{A, D\},\{\neg B\},\{\neg D\}
$$

Applying the resolution rule:

Resolution by refutation

- Resolution by refutation for propositional logic

Is correct: $\Gamma \vdash \varphi \Rightarrow \Gamma \vDash \varphi$
Is complete: $\Gamma \vDash \varphi \Rightarrow \Gamma \vdash \varphi$
In this sense: if $\Gamma \models \varphi$ then there exists a refutation graph

- Algorithm

It is a decision procedure for the problem $\Gamma \models \varphi$

It has time complexity $O\left(2^{n}\right)$
where n is the number of propositional symbols in $\Gamma \cup\{\neg \varphi\}$

