Artificial Intelligence

Propositional Resolution

Marco Piastra

Deductive systems and automation

• Is problem $\Gamma \vdash \varphi$ decidible?

A deductive system 'a la Hilbert' (i.e. derivation using axiom schemas and *MP*) does <u>not</u> translate into an algorithm

In fact, when trying to find a demonstration of $\ \Gamma \models arphi$:	
We can use all $\psi\in\Gamma$ (if Γ is finite)	(OK)
We can apply the inference rule MP whenever possible	(OK)
We cannot generate all axiom instances from Axn	(KO)

Moral: the problem is the infinite set of axioms

Resolution rule

(Just another inference rule)

 $\varphi \lor \chi, \neg \chi \lor \psi \models \varphi \lor \psi$ $\varphi \lor \psi$ is also called the *resolvent* of $\varphi \lor \chi \in \neg \chi \lor \psi$

The resolution rule is *correct*

Normal forms

= translation of each wff into an equivalent wff having a specific structure

Conjunctive Normal Form (CNF)

A wff with a structure

 $\begin{array}{l} \alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n \\ \text{where each } \alpha_i \text{ has a structure} \\ (\beta_1 \vee \beta_2 \vee \ldots \vee \beta_n) \\ \text{where each } \beta_j \text{ is a literal} \text{ (i.e. an atomic symbol or the negation of an atomic symbol)} \\ \text{Examples:} \end{array}$

 $\begin{array}{l} (B \lor D) \land (A \lor \neg C) \land C \\ (B \lor \neg A \lor \neg C) \land (\neg D \lor \neg A \lor \neg C) \end{array}$

Disjunctive Normal Form (DNF)

A wff with a structure $\beta_1 \lor \beta_2 \lor \ldots \lor \beta_n$ where each β_i has a structure $(\alpha_1 \land \alpha_2 \land \ldots \land \alpha_n)$ where each α_i is a *literal*

Conjunctive Normal Form

- Translation into CNF (it can be automated)
 - Exhaustive application of the following rules:
 - 1) Rewrite \rightarrow and \leftrightarrow using \land , \lor , \neg
 - 2) Move \neg inside composite formulae

"De Morgan laws": $\neg(\varphi \land \psi) \equiv (\neg \varphi \lor \neg \psi)$ $\neg(\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi)$

3) Eliminate double negations: ¬¬

4) Distribute V

$$((\varphi \land \psi) \lor \chi) \equiv ((\varphi \lor \chi) \land (\psi \lor \chi))$$

Examples:

 $(\neg B \to D) \lor \neg (A \land C)$ $B \lor D \lor \neg (A \land C)$ $B \lor D \lor \neg A \lor \neg C$ (rewrite \rightarrow) (De Morgan)

$$\neg (B \rightarrow D) \lor \neg (A \land C)$$

$$\neg (\neg B \lor D) \lor \neg (A \land C)$$
 (rewrite \rightarrow)

$$(B \land \neg D) \lor (\neg A \lor \neg C)$$
 (De Morgan)

$$(B \lor \neg A \lor \neg C) \land (\neg D \lor \neg A \lor \neg C)$$
 (distribute \lor)

Artificial Intelligence – A.A. 2012–2013

Propositional Resolution [5]

Clausal Forms

= each wff is translated into an equivalent set of wffs having a specific structure

Clausal Form (CF)

Starting from a wff in CNF

 $\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$ the clausal form is simply the set of all *clauses*

$$\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$$

Examples:

 $(B \lor D) \land (A \lor \neg C) \land C$ $\{(B \lor D), (A \lor \neg C), C\}$

Special notation

Each clause is usually written as a set

$$\begin{array}{c} \beta_1 \lor \beta_2 \lor \ldots \lor \beta_n \\ \{ \beta_1, \beta_2, \ldots, \beta_n \} \end{array}$$

Example:

$$\{\{B, D\}, \{A, \neg C\}, \{C\}\}$$

A set of *literals*: ordering is irrelevant no multiple copies

Artificial Intelligence – A.A. 2012–2013

Propositional Resolution [6]

Algorithm

```
Problem: "\Gamma \vdash \varphi"?
```

```
The problem is transformed into: is "\Gamma \cup \{\neg \varphi\}" coherent?
```

```
If \Gamma \vdash \varphi then \Gamma \cup \{\neg \varphi\} is incoherent and therefore a contradiction can be derived
```

```
\Gamma \cup \{\neg \varphi\} is translated into CNF hence in CF
```

The resolution algorithm is applied to the set of *clauses* $\Gamma \cup \{\neg \varphi\}$

At each step:

- a) Select a pair of clauses $\{C_1, C_2\}$ containing a pair of *complementary literals* making sure that this combination has never been selected before
- b) Compute *C* as the *resolvent* of $\{C_1, C_2\}$ according to the resolution rule.
- c) Add C to the set of clauses

Termination:

```
When C is the empty clause { }
```

```
or there are no more combinations to be selected in step a)
```

Advantages:

No axioms. Only one operation (i.e. the resolution rule). It is a native algorithm

The same example as before

 $B \lor D \lor \neg A \lor \neg C, B \lor C, A \lor D, \neg B \vdash D$

Refutation + rewrite in CNF:

 $B \lor D \lor \neg A \lor \neg C, B \lor C, A \lor D, \neg B, \neg D$

Rewrite in CF:

$$\{B, D, \neg A, \neg C\}, \{B, C\}, \{A, D\}, \{\neg B\}, \{\neg D\}$$

Applying the resolution rule:

The same example as before

 $B \lor D \lor \neg A \lor \neg C, B \lor C, A \lor D, \neg B \vdash D$

Refutation + rewrite in CNF:

 $B \lor D \lor \neg A \lor \neg C, B \lor C, A \lor D, \neg B, \neg D$

Rewrite in CF:

$$\{B, D, \neg A, \neg C\}, \{B, C\}, \{A, D\}, \{\neg B\}, \{\neg D\}$$

Applying the resolution rule:

Resolution by refutation for propositional logic

```
Is correct: \Gamma \models \varphi \Rightarrow \Gamma \models \varphi
Is complete: \Gamma \models \varphi \Rightarrow \Gamma \vdash \varphi
In this sense: if \Gamma \models \varphi then there exists a refutation graph
```

Algorithm

It is a decision procedure for the problem $\Gamma\models\varphi$

It has time complexity $O(2^n)$

where *n* is the number of propositional symbols in $\Gamma \cup \{\neg \varphi\}$