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Symbolic calculus?

= Awff ¢ is entailed by a set of wff I' iff
every model of T' is also model of ¢
Formally:
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meaning 17 1) R > v(p)

Note that, in the definition above, the set of all possible models is considered
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Symbolic calculus?

= Awff ¢ is entailed by a set of wff I' iff
every model of T' is also model of ¢
Formally:
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meaning 17 1) R > v(p)

Note that, in the definition above, the set of all possible models is considered

* Can we detect entailment by working on wtfs only?
For instance, by applying reasoning schemas...
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AXiomatiC methOd (i.e. Hilbert System, 1899)

* Language, axioms and rules of inference

<L,,Ax, Inf >
L, isa propositional language whose signature is P
Ax aset of wffs, i.e. the axioms
Inf is a set of inference rules
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Axioms

The axioms (of a logic) describe the reasoning schemas (of that logic)

» Axiom schemas for propositional logic (Lukasiewicz, 1917)

Ax1 —¢ > @ > )
Ax2 — (> W —>x) > (e >9) > (@@—>))
Ax3 — (T > 7Y) > W > )

Each wff obtained by substituting the meta-variabes ¢,y e y with a wif is an axiom
The wffs thus obtained are also called instances of axiom

Examples:
FA > (—A > A) [AX1: @/A, P/—A]
(=B VvV C) - -D) > (D - BV ) [Ax3: ¢/(B V C), y/D]

All axiom instances are tautologies
(But do not rely on this for the definition of deductive systems)
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Ihference Rules

Recall that {¢ >y, ¢} E v isvalid

= Inference rules are fundamental in any symbolic calculus
(also known as derivation or deduction rules)

They work on the structure of wffs

» For propositional logic, just one inference rule is sufficient

Modus Ponens (MP): 0 —

P
(4

It can be written also in this way:

o >y, 0}y (i.e.from{p >y, ¢}, v isderivable)
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Proofs (also derivations)

= A proof (or derivation) of a wif ¢ from a set of wffs I’
Is a finite sequence of steps: ' ¢, T - ¢,, ..., [ |9,

Admissible steps, at stage i :
1) ¢, isan instance of an axiom schema Ax,

2) ¢, isinl

3) ¢, has been obtained from two previous steps, via Modus Ponens
In the final step, the wff to be proved is obtained: ¢, = ¢

The notationis T' |- ¢ ‘¢ is derivable T"”

There must be many different ways to show that T |- ¢, i.e. many different proofs

Note that:
I - Axn (an axiom or axiom instance can be derived from any I')
- Axn (an axiom or axiom instance can be derived from an empty I')
{o, ..} Fo (any ¢ can be derived form a I" that contains it)
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Derivations, an incomplete example

= Same problem (“Harry is happy”)

% LY

- e A Tl Yoy

TQ..
av e e Bas Has ey B B Has Bay Bay

BVDV -ANANC),BVC, AVD, —B | D
Rewrite the problem in equivalent terms using only = and —

C>(—B—>A—>D), -B>C,mA—>D, =B | D

—-C—>("B—>A—>D))

- —-B—>(A—> D)

- A —>D

- —A—> D

(T 2> Y) > (¢ > YY) oY)
—(—mA —>D)—> ((A—>D)—> D)
A —>D)—>D

- D
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(MP 1,2)

(MP 3.4)
(MP 2.5)

(OK if this was an axiom — it is not)

(MP1,9)
(MP 6,10)
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Derivations: example O

= Any wif implies itself
o9

LF@@—=>{e—=>9)>p)—> (e —>@—>0) > @)
22 (p > (@ > p) > p))

3@ —>@—>9) > (@)

4 (@ —> (@@ —>p)

S:Fo >0

(Ax2)
(Ax1)
(MP 1,2)
(Ax1)
(MP 3.,4)
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Deduction (met3)-theorem

= Deduction theorem
Fr'vfpllFy < TlrRe-ovy

= (semantic dual of Deduction Theorem)

FU{plEy o TEe->y
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Derivations: example 1

» The order of hypotheses is irrelevant
Fl@—->@->2)—>@®—>@-—>x)

@>®W—>0),v,0F@—>@—>))
@ —>W—=>0),0, 0
@=>W—=>0)v, 0y >y
@—>W—=>0),0, 0y
@—>W—>0),v, 04
@>W>0)LVEe—>)
@P>W>0) Y > (@)
F@—>@®—>x)—>@-—>@-—>))

SIS IRCAN Al i vy

(MP 1,2)

(MP 3.,4)
(Ded)
(Ded)
(Ded)
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Derivations: example 2

*= Double negation implies affirmation
e

o7 > (o7 > )

7 i il S/

" o> ) > (T > T )
7 e S a2

TP (T > 7 mp) > (T > 9)

B R

2 il

i

e 7

RXRAINERN T

(Ax1)
(Ded)
(Ax3)
(MP 3,2)
(Ax3)
(MP 5,4)

(MP 6,7)
(Ded)
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Derivations: example 3

= Aruleisfalse if the LHS is true and the RHS is false
o>~y = =@ > )

Lo, (@YY (MP)
2oy >y (Ded)
3o =>Y) oY) > (Y > (e > Y) (Ax3)
g b o = > ) (MP 3,2)
55 e o (my o> e > ) (Ded)
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Derivations: example 4

* From absurd, anything can be derived (“Ex absurdo sequitur quodlibet”):

o > (mp >vy) (valeadire ¢p,—¢ |-

0,7P 7 > (7Y > 7p)
0,7 F T

O, 7P 7Y > T

O,7P (7Y > —p) > (> YP)
O, FPoY

0, 7P

0,7 Y

T e A
CRe > (o —>Y)

XA ERN T

(Ax1)

(MP 1,2)
(Ax3)
(MP 4,3)

(MP 5,6)
(Ded)
(Ded)

A set of wffs that contains a contradiction is called incoherent (or inconsistent)

From an incoherent set, anything can be derived,
including a contradiction like:y A =y
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Derivations: example 5 Cusing theorems)

= When falsity implies contradiction, then it must be true:

F(mo > @)

SRR A i vy

9:

10:
11:
12:

TP P, T TP

TP P, TP TP

PP, TP

PP, TP P> (T > (T > )
P >0, 7O T > (T > )
_'90_)(:0’ _'90 __'(_'90_)90)

P> 70> (T o)

P >P (TP > (T > 9) > (T > @) o)
PP (TP o>

A el e X

PP

F(mp>9)>0p

(MP 1,2)
(Th. 4)
(MP 3,4)
(MP 1,5)
(Ded)
(Ax3)
(MP 7,8)

(MP 9,10)
(Ded)
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Derivations: Theorem “X”

= Resolution rule (see the first incomplete example):

H(—p =) > (9 > ¥) > Y)

(7o > Y), (@0 >Y) F(—p > Y)

(7 =>YP), (@ >Y) (9 >Y) => (7Y = p)
(= > Y), (@ >Y) F (7Y > )
(7>, (@ >Y), 7Y | o

(7 > P), (@ >Y), Y @Y
(T oY), (@ >Y), Y Y
(7>, (@ >Y) (7Y > 9P)

(mp > YP), (@ >Y) F(~yY >y) >Y)
9 (e > Y), (@ >Y) |y

10: (7 > (9 > ¥) > ¥)

IR =>y) = (@ >Y) > y)

SRR Al i vy

Rewritten in an equivalent way:

F@ Vy)—>(—¢ VY >y

(Ax3)
(MP 1,2)
(Ded)

(MP 4.5)
(Ded)
(Th. 5)
(MP 7,8)
(Ded)
(Ded)
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Correctness

= Correctness
All wtfs that are derivable from axioms Axn are tautologies (valid wffs)

Fe =F¢

It can be verified directly that the axioms schemas Ax1, Ax2 e Ax3

are schemas of tautologies as well
The inference rule of Modus Ponens is correct, as it preserves entailment

Any wff entailed by a set of tautologies is a tautology
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Completeness

= Completeness

All tautologies (i.e. valid wffs) are derivable from axiom schemas Axn

Fo = o

Why:
See textbook
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Properties of derivations

=  (Coherence (definition)

A set of wffs I'is coherent if it exists at least a wff ¢ which is not derivable from I'
(see theorem 3)

=  Refutation

I U (=g} isincoherent < T |- ¢
I' U {—¢} isincoherent implies that foranyy, T'U {—¢} |y

In particular F'U{-e¢}le
From deduction theorem T | —¢p —>¢

From Theorem 5 ' F(mp—>9)—>e
MP Lo
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Properties of derivations

= (Coherence is equivalent to satisfiability

A set of wifs I' is satisfiable if it is coherent
If " was incoherent, then it would be possible to derive a contradiction (Theorem 3)
But, given that derivability implies entailment, then I" should be unsatisfiable

A set of wffs I which is coherent is also satisfiable
(see textbook)

= Syntactic compactness
Consider a set of wffs I (not necessarily finite)

I' ¢ = There existafinite subset X C T suchthatX |- ¢
(See textbook for a proof)
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Properties of derivations

= Syntactic monotony
Forany Tand A, if T'}-¢ then TUA }-¢

In fact, any derivation of ¢ from I' remains valid evenif I' grows larger
» Transitivity

fforany ¢ €X wehave T'}-¢,thenif |-y then T}y
One can apply the deduction theorem and MP repeatedly
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Theorems

Given a set of wffs I, the theorems of I' is the set of all wff ¢
that can be derived from I" « (T’ can be empty)
The set of theorems of I is also written as Th(I")
Due to the definition of derivability, this means that any such ¢ descends from Ax U I'
This definition has general validity: it applies to any axiomatized logic

Any theorem of I is also an entailment of "
p EThI) =T Egp

Why? (a simple exercise for the reader ...)
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Independence of the axiom schemas Axn

= Minimality
The proof of completeness requires using them all (see textbook)

* Independence

The three schemas are logically independent:
It is not possible to derive any of them from the other two

* There exist other axiomatizations of propositional logic

In one of them, just a single schema is used

Using axiom schemas, however, is unavoidable
In other words, using an infinite set of axioms is unavoidable
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Theorems, theories, 3xiomatizations

* Theory = set of wffs (yes, just that)
Any set 2 (however defined) is a theory

= Theorem = a wff derivable from a set of wifs

Given a set of wffs I, the set of theorems of I'
is the set of all wffs that can be derived from I'

Th)={p:T |- ¢}
= Axiomatizations = a set of wff that describes a theory

A set of wffs I'is an axiomatization of a theory 2 iff
2 = Th)

Axiom schemas Axn describe the theory of valid wffs
in (classical) propositional logic
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