
Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[1111]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

Artificial IntelligenceArtificial IntelligenceArtificial IntelligenceArtificial Intelligence

Decisions
and Algorithms

Marco Piastra

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[2222]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

Decisions and decidability (automation)Decisions and decidability (automation)Decisions and decidability (automation)Decisions and decidability (automation)
� What is a problem?

A problem is a relation between inputs and solutions

K : I  S (K is the relation, I is the input space, S is the solution space)

� Search problem
Relation K associates each input to many solutions (i.e. one-to-many)

Optimization problems

A search problem plus an objective or cost function

c : S  R (from S to R, the set of real number)

In general, the task is finding the solution(s) having maximal or minimal cost

� Decision problem
The solution space S coincides with {0, 1}

and K associates each input to a unique solution

Example:    ?
The input space I contains all possible combinations of set  of wffs with individual wffs 

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[3333]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

Decisions and decidability (automation)Decisions and decidability (automation)Decisions and decidability (automation)Decisions and decidability (automation)
� Decidable problem

A decision problem for which K can be described by an algorithm
or, which is equivalent, for which K can be described by a Turing machine

(there are other ways of defining an algorithm or an effective procedure: they are all equivalent)

Example of an undecidable problem: The Halting Problem

Given the formal description of a particular Turing machine with a specific input,
is it possible to tell if whether it will eventually halt or run forever?

In other words, does it exist a Turing machine that, given in input the description of another
Turing machine, will always produce the answer desired?

The answer is no (such a Turing machine cannot exist)

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[4444]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

An aside: The An aside: The An aside: The An aside: The Halting ProblemHalting ProblemHalting ProblemHalting Problem
� Intuitive ideas behind the proof (i.e. of undecidability)

There should exist a Turing machine H that, given the description of another Turing machine M
and its input I, will always terminate with either “halt” or “loop” as its output depending on
whether M will terminate with input I

H “halt” / “loop”
Machine M

Input I

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[5555]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

An aside: The An aside: The An aside: The An aside: The Halting ProblemHalting ProblemHalting ProblemHalting Problem
� Intuitive ideas behind the proof (i.e. of undecidability)

There should exist a Turing machine H that, given the description of another Turing machine M
and its input I, will always terminate with either “halt” or “loop” as its output depending on
whether M will terminate with input I

If H existed, we could easily build another Turing machine K that enters an infinite loop
whenever the output of H is “halt” and that terminates, with output “halt”, when H outputs “loop”

H
Machine M

Input I

“loop”?

“halt”
YES

NO

do loop!

K

H “halt” / “loop”
Machine M

Input I

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[6666]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

An aside: The An aside: The An aside: The An aside: The Halting ProblemHalting ProblemHalting ProblemHalting Problem
� Intuitive ideas behind the proof (i.e. of undecidability)

There should exist a Turing machine H that, given the description of another Turing machine M
and its input I, will always terminate with either “halt” or “loop” as its output depending on
whether M will terminate with input I

If H existed, we could easily build another Turing machine K that enters an infinite loop
whenever the output of H is “halt” and that terminates, with output “halt”, when H outputs “loop”

An absurdity is then produced by ‘short circuit’, using K as the input of itself:
K with input I should diverge when K with input I terminates and vice-versa

H “halt” / “loop”
Machine M

Input I

H
Machine M

Input I

“loop”?

“halt”
YES

NO

do loop!

K

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[7777]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

Transforming problemsTransforming problemsTransforming problemsTransforming problems: entailment as satisfiability: entailment as satisfiability: entailment as satisfiability: entailment as satisfiability
� The decision problem “    ? ”

can be transformed into a satisfiability problem

In fact,    iff   {} is not satisfiable

W



�



� �

(w() is the set of possible worlds that satisfy )

    w()  w({}) �  {�, �}

w({}) = �

w(  {}) = w()  w({})

w(  {}) =  � � = 

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[8888]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

Transforming problemsTransforming problemsTransforming problemsTransforming problems: entailment as satisfiability: entailment as satisfiability: entailment as satisfiability: entailment as satisfiability
� The decision problem “    ? ”

can be transformed into a satisfiability problem

In fact,    iff   {} is not satisfiable

� The decision problem “is   {} satisfiable?”

can be transformed into a wff satisfiability problem

In fact,   {} is satisfiable iff (  {}) is satisfiable

This is the wff obtained by merging all the wffs in   {} via ,

i.e. the conjunctive closure of   {}

W



�



� �

(w() is the set of possible worlds that satisfy )

    w()  w({}) �  {�, �}

w({}) = �

w(  {}) = w()  w({})

w(  {}) =  � � = 

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[9999]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

Satisfiability and decidability (in Satisfiability and decidability (in Satisfiability and decidability (in Satisfiability and decidability (in LP))))
� Is the decision problem “is  satisfiable?” decidable?

� It can be transformed into a search problem
i.e. finding a possible world (in the set of all possible worlds) that satisfies 

The input space is the set of all wffs in L
P

In the scientific literature, this problem is called “SAT”

Intuition: we can try every possible value assignment for the atoms in 

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[10101010]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

Satisfiability and decidability (in Satisfiability and decidability (in Satisfiability and decidability (in Satisfiability and decidability (in LP))))
� Is the decision problem “is  satisfiable?” decidable?

� It can be transformed into a search problem
i.e. finding a possible world (in the set of all possible worlds) that satisfies 

The input space is the set of all wffs in L
P

In the scientific literature, this problem is called “SAT”

Intuition: we can try every possible value assignment for the atoms in 

Example:
(B  D (A  C))

This method O(2n) time complexity, due to the number of value assignments

B

D D

A A A A

C C C C C C C C

0 0 0 0

1

1 0

1 0 1 0

0

01

0101

0 0 1 00 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 01010101

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[11111111]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

Satisfiability and decidability (in Satisfiability and decidability (in Satisfiability and decidability (in Satisfiability and decidability (in LP))))
Example:

(B  D (A  C)) which is equivalent to
(B D  (A  C))

Each branch in the tree represents a possible assignment:

B

D D

A A A A

C C C C C C C C

0 0 0 0

1

1 0

1 0 1 0

0

01

0101

0 0 1 00 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 01010101

A real-world algorithm

would stop here

The same algorithm is forced to try all possible assignments

when  is not satisfiable.

For instance: (B D A C)

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[12121212]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

Computational complexity, classes Computational complexity, classes Computational complexity, classes Computational complexity, classes P and and and and NP
This concept applies to decidable problems only

It is based on the performances of a (known) Turing machine that gives the answer
with respect to the worst case (i.e. the less favorable input for the specific problem)

� Time complexity
The number of steps that the Turing machine requires for computing the answer,
as a function of some numerical dimension of the input (e.g. the number of atoms in a wff)

� Memory complexity
The number of tape cells that the Turing machine requires for computing the answer,
as a function of some numerical dimension of the input

� Class P
The class of problems for which there is a Turing machine that requires O(P(n)) time

where P() is a polynomial of finite degree and n is the dimension of the (worst-case) input

� Class NP
The class of all problems:

a) A method for enumerating all possible answers (i.e. recursive enumerability)

b) An algorithm in class P that verifies if a possible answer is also a solution

It includes all problems in class P (that is, P  NP)

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[13131313]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

Class Class Class Class NP-complete and the SAT problemand the SAT problemand the SAT problemand the SAT problem
� Class NP-complete

It is a subclass of NP (NP-complete  NP)

A problem K is NP-complete if every problem in class NP is reducible to K

� Reducibility
For class NP-complete

Consider a problem K for which a decision algorithm M(K) is known

A problem J is reducible to K if there exist a decision algorithm M(J) such that:

a) algorithm M(K) is called just once, as a “subroutine”, at the end of M(J)

b) apart from M(K), M(J) has polynomial complexity

� The problem SAT

Is NP-complete (historically, it is the first one to be known)

Moral: if we had a polynomial decision algorithm for SAT, we would also have that

P = NP
This fact is not known, it is believed that: P  NP

(and a lot will change in the digital world, if this proves to be false)

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[14141414]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

Semantic Tableau, Semantic Tableau, Semantic Tableau, Semantic Tableau, alpha and beta rulesalpha and beta rulesalpha and beta rulesalpha and beta rules
� Semantic tableau is a method

which can be implemented as a Turing machine

� It is a decision algorithm for the problem
“is  satisfiable?”

where  is a set of wffs in L
P

In spite of its name, it is a symbolic method: it works on the structure of wffs only

No explicit assignments of (semantic) values are involved

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[15151515]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

Semantic Tableau, Semantic Tableau, Semantic Tableau, Semantic Tableau, alpha and beta rulesalpha and beta rulesalpha and beta rulesalpha and beta rules
� A tableau is a set of wffs in L

P

The method starts from an initial tableau

(i.e. the set  whose satisfiability is to be determined)

It is based on rules that transform each one wff into two wffs

� Alpha rules (i.e. expansion)

� Beta rules (i.e. bifurcation)
(b1)

  

 

(b2)

(  )

 

(b3)

  

 

(b4)

 

, , 

(b5)

( )

,  , 

(a1)

()



(a2)

  

, 

(a3)

(  )

, 

(a4)

(  )

, 

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[16161616]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

� Original problem: “    ? ”
Example input: A  (B  C)  B  (A  C) ?

� Transformed problem: “is   {} satisfiable?”
Hence the initial tableau is  {}

Semantic Tableau Semantic Tableau Semantic Tableau Semantic Tableau ---- a working examplea working examplea working examplea working example

A  (B  C), (B  (A  C))

A  (B  C), B, (A  C)

A  (B  C), B, A, C

A, B, A, C (B  C), B, A, C

closed

(a4)

(b3)

(a4)

B, B, A, C C, B, A, C

closed closed

(b3)

(a4)

(  )

, 

(b3)

  

 

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[17171717]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

� Original problem: “    ? ”
Example input: A  (B  C)  B  (A  C) ?

� Transformed problem: “is   {} satisfiable?”
Hence the initial tableau is  {}

Semantic Tableau Semantic Tableau Semantic Tableau Semantic Tableau ---- a working examplea working examplea working examplea working example

A  (B  C), (B  (A  C))

B, (A  C)

A, C

A (B  C)

x B C

x x

(a4)

(  )

, 

(b3)

  

 

The usual notation in textbooks is even more concise:

only those wffs that are added to the initial tableau in each branch are shown in the tree

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[18181818]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

Semantic Tableau Semantic Tableau Semantic Tableau Semantic Tableau ---- algorithm recapalgorithm recapalgorithm recapalgorithm recap
� Algorithm (informal description – see Lab for the implementation):

Input problem: “    ? ”

The input problem is transformed into “is   {} satisfiable?”

Methods of this type are also called ‘by refutation’

For each active tableau (i.e. the leaves in the tree),

There could be two cases:

1) The tableau contains only literals
If the tableau contains a complementary pair of literals

then declare it closed
else declare it open (i.e. failure)

2) The tableau contains one or more composite wff

First try to apply an alpha rule,
otherwise, if this is not possible, try to apply a beta rule.
In either case, two new tableau will be generated

Output: the tree structure of tableau

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[19191919]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

Semantic Tableau Semantic Tableau Semantic Tableau Semantic Tableau ---- (required) (required) (required) (required) algorithm propertiesalgorithm propertiesalgorithm propertiesalgorithm properties
� Termination

The algorithm never diverges (i.e. it never enters an infinite loop)

Each application of either alpha or beta rule simplifies a wff (i.e. it makes it less composite):
so the application of rules cannot continue forever

� Symbolic derivation
As already stated, in spite of its name, this is a symbolic method

We write

 ST 

iff the Semantic Tableau method is successful (i.e. all leaves are closed) for  {}

How do we know that  ST      ?

(Soundness - also correctness - of the method)

Exercise: prove it
(hint: consider the condition on  {} and think about how it relates to each rule)

How do we know that     ST  ?

(Completeness of the method)

Proving it is definitely more difficult: see textbook (i.e. Ben-Ari)

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[20202020]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

Semantic Tableau Semantic Tableau Semantic Tableau Semantic Tableau ---- (required) (required) (required) (required) algorithm propertiesalgorithm propertiesalgorithm propertiesalgorithm properties
� Termination

The algorithm never diverges (i.e. it never enters an infinite loop)

Each application of either alpha or beta rule simplifies a wff (i.e. it makes it less composite):
so the application of rules cannot continue forever

� Soundness
 ST     

� Completeness
    ST 

� Termination + Soundness + Completeness = Decision Algorithm
(for propositional logic)

Decisions and AlgorithmsDecisions and AlgorithmsDecisions and AlgorithmsDecisions and Algorithms [[[[21212121]]]]Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ---- A.A. 2012A.A. 2012A.A. 2012A.A. 2012----2013201320132013

Which method is faster?Which method is faster?Which method is faster?Which method is faster?
� Time complexity (remember: consider the worst case)

The `brute-force search’ and Semantic Tableau have the same complexity : O(2n)

� How well do these method perform in practice?
It depends

Example 1(try it):

A  B  C A

The `brute-force search’ requires 23= 8 attempts

The Semantic Tableau method requires applying the same alpha rule 3 times

Example 2 (try it):

(A  B)  (A  B)  (A  B)  (A  B)

The `brute-force search’ requires 22= 4 attempts

The Semantic Tableau method requires applying the same alpha rule 3 times;
then the same beta rule is applied exhaustively producing a tree with 4 levels,
with each node in a tree with a branching factor 2

At the end, the tree has 24=16 leaves (all closed tableau)

