Artificial Intelligence

Propositional Logic

Marco Piastra

Propositional Logic [1]

Boolean algebras by examples

Start from a set of objects *U* and construct, in a *bottom-up fashion*, the collection *X* of all possible subsets of *U* Examples:

The collection X is also called the **power set** of U and is denoted as 2^U (i.e. $X = 2^U$)

Consider the operations \cup , \cap , $\setminus U$: *union*, *intersection* and *absolute complement* Any structure $\langle X, \cup, \cap, \setminus U, \emptyset, U \rangle$ is a <u>Boolean algebra</u>

Abstract Boolean Algebras

"This type of algebraic structure captures essential properties of both set operations and logic operations." [Wikipedia]

Any structure $\langle X, \cup, \cap, \backslash U, \emptyset, U \rangle$ is a **Boolean algebra** iff it has the following properties (for any $A, B, C \in X$):

 $\begin{array}{ll} A \cup A = A \cap A = A & idempotence \\ A \cup B = B \cup A, \ A \cap B = B \cap A & commutativity \\ A \cup (B \cup C) = (A \cup B) \cup C, \ A \cap (B \cap C) = (A \cap B) \cap C & associativity \\ A \cup (A \cap B) = A, \ A \cap (A \cup B) = A & absorption \\ A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C) & distributivity \\ \varnothing \cup A = A, \ \varnothing \cap A = \varnothing, \ U \cup A = U, \ U \cap A = A & special elements \\ A \cup (A \setminus U) = U, \ A \cap (A \setminus U) = \varnothing & complement \end{array}$

Concrete examples

Any structure $\langle X, \cup, \cap, \backslash U, \emptyset, U \rangle$ is a **Boolean algebra** iff it has the following properties (for any $A, B, C \in X$): $A \cup A = A \cap A = A$ idempotence $A \cup B = B \cup A$, $A \cap B = B \cap A$ commutativity $A \cup (B \cup C) = (A \cup B) \cup C, \quad A \cap (B \cap C) = (A \cap B) \cap C$ associativity $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$ absorption $A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ distributivity $\emptyset \cup A = A$, $\emptyset \cap A = \emptyset$, $U \cup A = U$, $U \cap A = A$ special elements complement $A \cup (A \setminus U) = U, A \cap (A \setminus U) = \emptyset$

For this structure	$A \cup A \backslash \boldsymbol{U} = \boldsymbol{U}$	$A \cap (A \cup B) = A$
properties can be checked directly	$A = \{a\}$ $A \setminus U = \{b, c\}$ $A \cup A \setminus U = \{a, b, c\}$	$A = \{b\}$ $B = \{c\}$ $A \cup B = \{b, c\}$ $A \cap (A \cup B) = \{b\}$

Concrete examples

Any structure $\langle X, \cup, \cap, \backslash U, \emptyset, U \rangle$ is a **Boolean algebra** iff it has the following properties (for any $A, B, C \in X$): $A \cup A = A \cap A = A$ idempotence $A \cup B = B \cup A$, $A \cap B = B \cap A$ commutativity $A \cup (B \cup C) = (A \cup B) \cup C, A \cap (B \cap C) = (A \cap B) \cap C$ associativity absorption $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ distributivity $\emptyset \cup A = A$, $\emptyset \cap A = \emptyset$, $U \cup A = U$, $U \cap A = A$ special elements $A \cup (A \setminus U) = U, A \cap (A \setminus U) = \emptyset$ complement

De Morgan's laws

Artificial Intelligence – A.A. 2012–2013

Propositional Logic [5]

Concrete examples

Any structure $\langle X, \cup, \cap, \backslash U, \emptyset, U \rangle$ is a **Boolean algebra** iff it has the following properties (for any $A, B, C \in X$): $A \cup A = A \cap A = A$ idempotence $A \cup B = B \cup A$, $A \cap B = B \cap A$ commutativity $A \cup (B \cup C) = (A \cup B) \cup C, A \cap (B \cap C) = (A \cap B) \cap C$ associativity $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$ absorption $A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ distributivity $\emptyset \cup A = A$, $\emptyset \cap A = \emptyset$, $U \cup A = U$, $U \cap A = A$ special elements $A \cup (A \setminus U) = U, A \cap (A \setminus U) = \emptyset$ complement

Propositional Logic [6]

Which Boolean algebra for logic?

- * Given that all boolean algebras share the same properties (*see before*) we can adopt the simplest one as reference, namely the one based on $X = \{U, \emptyset\}$ i.e. a *two-valued* algebra: {*nothing*, *everything*} or {*false*, *true*} or { \bot , \top } or {0, 1}
- Algebraic structure

< {0,1}, OR, AND, NOT, 0, 1>

Boolean functions and truth tables

Boolean functions: $f: \{0, 1\}^n \rightarrow \{0, 1\}$

AND, OR and NOT are boolean functions, they are defined via truth tables

A	В	OR
0	0	0
0	1	1
1	0	1
1	1	1

A	В	AND
0	0	0
0	1	0
1	0	0
1	1	1

A	NOT
0	1
1	0

Composite functions

Truth tables can be defined also for composite functions For example, to verify logical laws

Adequate basis

 How many *basic* boolean functions do we need to define *any* boolean function?

•	A_1	A_2	•••	A_n	$f(A_1, A_2,, A_n)$
	0	0	•••	0	f_1
rows	0	0	•••	1	f_2
$2^n r c$	•••	•••	•••	•••	
- -	•••	•••	•••	•••	
¥	1	1	•••	1	f_{2^n}

Just OR, AND and NOT: any other function can be expressed as composite function In the generic *truth table* above:

- For each row where f = 1, we compose by AND the *n* input variables taking either A_i when the *i*-th value is 1, or $\neg A_i$ when *i*-th value is 0
- We compose by OR all the composed expression obtained in the previous step

Other adequate basis

Also {*OR*, *NOT*} o {*AND*, *NOT*} sono basi adeguate

An adequate basis can be obtained by just one 'ad hoc' function: NOR or NAND

A	В	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

A	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

Two remarkable functions: *implication* and *equivalence*

Logicians prefer the basis {*IMP*, *NOT*}

A	В	A IMP B
0	0	1
0	1	1
1	0	0
1	1	1

A	В	A EQU B
0	0	1
0	1	0
1	0	0
1	1	1

A EQUB = (A IMP B) AND (B IMP A)

Propositional logic

i.e. the simplest of 'classical' logics

Propositions

We consider all *possible worlds* that can be described via atomic *propositions*

"Today is Friday" "Turkeys are birds with feathers" "Man is a featherless biped"

Formal *language*

A precise and formal language in which *propositions* are the *atoms* (i.e. no intention to represent the internal structure of *propositions*) Atoms can be composed in complex formulae via *logical connectives*

Formal semantics

A class of formal structures, each representing a *possible world* **Fundamental**: in each *possible world*, each formula of the language is either *true* or *false*

- Atoms are given a truth value (i.e. false, true)
- Logical connectives are associated to *boolean functions*: each *formula* corresponds to a functional composition in which *atoms* are the arguments (*truth-functionality*)

The class of propositional, semantic structures

They will define the meaning of the formal language (to be defined)

Each possible world is a structure < {0,1}, P, v>

 $\{0,1\}$ are the truth values

P is the **signature** of the formal language: a set of propositional symbols

v is a function : $\mathbf{P} \rightarrow \{0,1\}$ assigning truth values to the symbols in \mathbf{P}

Propositional symbols (signature)

Each symbol in *P* stands for an actual *proposition* (in natural language) In the simple convention, we use the symbols *A*, *B*, *C*, *D*, ... Caution: *P* is not necessarily *finite*

Possible worlds

The class of structures contains all possible worlds:

 $<\!\!\{0,1\}, P, v \!\!> \\ <\!\!\{0,1\}, P, v' \!\!> \\ <\!\!\{0,1\}, P, v' \!\!> \\ <\!\!\{0,1\}, P, v'' \!\!>$

•••

Each class of structure shares P and $\{0,1\}$

The functions v are different: the assignment of truth values varies, depending on the possible world

If P is finite, there are only *finitely* many distinct possible worlds (actually $2^{|P|}$)

Propositional language

i.e. how we describe the world, by propositions

In a propositional language L_P
 A set P of propositional symbols: P = {A, B, C, ...}
 Two (primary) logical connectives: ¬, →
 Three (derived) logical connectives: ∧, ∨, ↔
 Parenthesis: (,) (there are no precedence rules in this language)

Well-formed formulae (wff)

A set of syntactic rules

The set of all the **wff** of L_p is denoted as wff (L_p) $A \in \mathbf{P} \Rightarrow A \in \text{wff}(L_p)$ $\varphi \in \text{wff}(L_p) \Rightarrow (\neg \varphi) \in \text{wff}(L_p)$ $\varphi, \psi \in \text{wff}(L_p) \Rightarrow (\varphi \rightarrow \psi) \in \text{wff}(L_p)$ $\varphi, \psi \in \text{wff}(L_p) \Rightarrow (\varphi \lor \psi) \in \text{wff}(L_p), \quad (\varphi \lor \psi) \Leftrightarrow ((\neg \varphi) \rightarrow \psi)$ $\varphi, \psi \in \text{wff}(L_p) \Rightarrow (\varphi \land \psi) \in \text{wff}(L_p), \quad (\varphi \land \psi) \Leftrightarrow (\neg (\varphi \rightarrow (\neg \psi)))$ $\varphi, \psi \in \text{wff}(L_p) \Rightarrow (\varphi \leftrightarrow \psi) \in \text{wff}(L_p), \quad (\varphi \leftrightarrow \psi) \Leftrightarrow ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$

Semantics: interpretations

Composite (i.e. *truth-functional*) semantics for wffs

Given a possible world <{0,1}, P, v> the function $v : P \rightarrow \{0,1\}$ can be extended to assign a value to *every* wff

Each logical connective is associated to a binary (i.e. *boolean*) function:

- $v(\neg \varphi) = NOT(v(\varphi))$
- $v(\varphi \land \psi) = AND(v(\varphi), v(\psi))$
- $v(\varphi \lor \psi) = OR(v(\varphi), v(\psi))$
- $v(\varphi \rightarrow \psi) = OR(NOT(v(\varphi)), v(\psi)) \text{ (also } IMP(v(\varphi), v(\psi)) \text{)}$
- $v(\varphi \leftrightarrow \psi) \quad = \quad AND(OR(NOT(v(\varphi)), v(\psi)), OR(NOT(v(\psi)), v(\varphi)))$

Interpretations

Function v (extended as above) assigns a truth value <u>to each</u> $\varphi \in wff(L_P)$

 $v: \mathrm{wff}(L_P) \to \{0,1\}$

Then v is said to be an *interpretation* of L_p

Note that the truth value of any $\operatorname{wff} \varphi$ is univocally determined

by the values assigned to each symbol in the signature **P**

Sometimes we will use just v instead of <{0,1}, P, v>

Satisfaction, models

Possible worlds and truth tables

Examples: $\varphi = (A \lor B) \land C$

Different rows different worlds

Caution: in each possible world every $\varphi \in wff(L_P)$ has a truth value

Α	В	С	$A \lor B$	$(A \lor B) \land C$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

A possible world **satisfies** a wff φ iff $v(\varphi) = 1$

We also write $\langle \{0,1\}, P, v \rangle \models \varphi$

In the truth table above, the rows that satisfy arphi are in gray

Such possible world v is also said to be a **model** of φ

By extension, a possible world *satisfies* (i.e. is *model* of) a set of wff $\Gamma = {\varphi_1, \varphi_2, ..., \varphi_n}$ iff *v* satisfies (i.e. is *model* of) each of its wff $\varphi_1, \varphi_2, ..., \varphi_n$ Sometimes we will use $v \models \Gamma$ instead of $\langle \{0,1\}, P, v \rangle \models \Gamma$

Tautologies, contradictions

A tautology

Is a (propositional) wff that is always satisfied It is also said to be **valid** Any wff of the type $\varphi \lor \neg \varphi$ is a tautology

A contradiction

Is a (propositional) wff, that cannot be satisfied

Any wff of the type $\varphi \land \neg \varphi$ is a contradiction

A	$A \land \neg A$	$A \lor \neg A$
0	0	1
1	0	1

A	В	$(\neg A \lor B) \lor (\neg B \lor A)$
0	0	1
0	1	1
1	0	1
1	1	1

Α	В	$\neg((\neg A \lor B) \lor (\neg B \lor A))$
0	0	0
0	1	0
1	0	0
1	1	0

Note:

- Not all wffs are either tautologies or contradictions
- If φ is a tautology then $\neg \varphi$ is a contradiction and vice-versa

• Consider the set *W* of all possible worlds

Each wff of *L*_{*P*} corresponds to a **subset** of *W*

i.e. the subset of possible worlds that satisfy it

For example, φ corresponds to $\{v : v(\varphi) = 1\}$ (it can be written also as $\{v : v \models \varphi\}$)

The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

• Consider the set *W* of all possible worlds

Each wff of L_P corresponds to a **subset** of W

i.e. the subset of possible worlds that satisfy it

For example, φ corresponds to $\{v : v(\varphi) = 1\}$ (it can be written also as $\{v : v \models \varphi\}$) The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

• Consider the set W of all possible worlds

Each wff of *L*_{*P*} corresponds to a **subset** of *W*

i.e. the subset of possible worlds that satisfy it

For example, φ corresponds to $\{v : v(\varphi) = 1\}$ (it can be written also as $\{v : v \models \varphi\}$)

The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

• Consider the set W of all possible worlds

Each wff of *L*_{*P*} corresponds to a **subset** of *W*

i.e. the subset of possible worlds that satisfy it

For example, φ corresponds to $\{v : v(\varphi) = 1\}$ (it can be written also as $\{v : v \models \varphi\}$)

The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

" φ is neither a contradiction nor a tautology"

"some possible worlds in W are model of φ , others are not"

" φ is <u>not</u> (logically) *valid*"

Furthermore: "φ is satisfiable" "φ is falsifiable"

About formulae and their hidden relations

Hypothesis:

 $\varphi_1 = B \lor D \lor \neg (A \land C)$

"Sally likes Harry" OR "Harry is happy" OR NOT ("Harry is human" AND "Harry is a featherless biped")

 $\varphi_2 = B \vee C$

"Sally likes Harry" OR "Harry is a featherless biped"

 $\varphi_3 = A \vee D$

"Harry is human" OR "Harry is happy"

 $\varphi_4 = \neg B$

NOT "Sally likes Harry"

Thesis:

 $\psi = D$ "Harry is happy" Is there any **logical relation** between hypothesis and thesis?

And among the propositions in the hypothesis?

Artificial Intelligence – A.A. 2012–2013

Propositional Logic [21]

Logical consequence

The overall truth table for the wff in the example

$$\begin{split} \varphi_1 &= B \lor D \lor \neg (A \land C) \\ \varphi_2 &= B \lor C \\ \varphi_3 &= A \lor D \\ \varphi_4 &= \neg B \\ \hline \psi &= D \end{split}$$

All the possible worlds that satisfy $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ satisfy ψ as well

A	В	С	D	$arphi_1$	$arphi_2$	φ_3	$arphi_4$	ψ
0	0	0	0	1	0	0	1	0
0	0	0	1	1	0	1	1	1
0	0	1	0	1	1	0	1	0
0	0	1	1	1	1	1	1	1
0	1	0	0	1	1	0	0	0
0	1	0	1	1	1	1	0	1
0	1	1	0	1	1	0	0	0
0	1	1	1	1	1	1	0	1
1	0	0	0	1	0	1	1	0
1	0	0	1	1	0	1	1	1
1	0	1	0	0	1	1	1	0
1	0	1	1	1	1	1	1	1
1	1	0	0	1	1	1	0	0
1	1	0	1	1	1	1	0	1
1	1	1	0	1	1	1	0	0
1	1	1	1	1	1	1	0	1

• This is the relation of *logical consequence*: φ_1 , φ_2 , φ_3 , $\varphi_4 \models \psi$ (also *logical entailment* or *entailment*)

(Pay attention to notation!)

• Consider the set of all possible worlds *W*

"All possible worlds that are *model* of ψ "

• Consider the set of all possible worlds *W*

"All possible worlds that are model of φ_1 "

```
\{ \varphi_1 \} \not\models \psi
because the set of models of \{ \varphi_1 \}
is <u>not</u> contained in the set of models of \psi
```

• Consider the set of all possible worlds *W*

"All possible worlds that are models of $arphi_2$ "

 $\{\varphi_1,\varphi_2\} \not\models \psi$

because the set of models of { φ_1, φ_2 } (i.e. the *intersection* of the two subsets) is <u>not</u> contained in the set of models of ψ

• Consider the set of all possible worlds *W*

"All possible worlds that are models of $arphi_3$ "

 $\{ \varphi_1, \varphi_2, \varphi_3 \} \not\models \psi$ because the set of models of $\{ \varphi_1, \varphi_2, \varphi_3 \}$ is <u>not</u> contained in the set of models of ψ

• Consider the set of all possible worlds *W*

"All possible worlds that are models of $arphi_4$ "

 $\{ \varphi_1, \varphi_2, \varphi_3, \varphi_4 \} \models \psi$ Because the set of models of $\{ \varphi_1, \varphi_2, \varphi_3, \varphi_4 \}$ <u>is</u> contained in the set of models of ψ

• Consider the set of all possible worlds *W*

"All possible worlds that are models of $arphi_4$ "

 $\{ \varphi_1, \varphi_2, \varphi_3, \varphi_4 \} \models \psi$ Because the set of models of $\{ \varphi_1, \varphi_2, \varphi_3, \varphi_4 \}$ <u>is</u> contained in the set of models of ψ In this case, all the wffs $\varphi 1, \varphi 2, \varphi 3, \varphi 4$ are needed for the relation of *entailment* to hold

Symmetric entailment = logical equivalence

Equivalence

Let φ and ψ be wffs such that:

 $\varphi \models \psi \in \psi \models \varphi$

The two wffs are also said to be *logically equivalent*

In symbols: $\varphi \equiv \psi$

Substitutability

Two equivalent wffs have exactly the same models

In terms of entailment, equivalent wffs are substitutable

(even as sub-formulae)

In the example: $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\} \models \psi$

$\varphi_1 = B \lor D \lor \neg (A \land C)$	$\varphi_1 = B \lor D \lor (A \to \neg C)$
$\varphi_2 = B \lor C$	$\varphi_2 = B \vee C$
$\varphi_3 = A \vee D$	$\varphi_3 = \neg A \rightarrow D$
$\varphi_4 = \neg B$	$\varphi_4 = \neg B$
$\psi = D$	$\psi = D$

Implication

The wffs of the problem can be re-written using equivalent expressions:

(using the basis $\{\rightarrow, \neg\}$)

 $\begin{array}{ll} \varphi_1 = C \rightarrow (\neg B \rightarrow (A \rightarrow D)) & \varphi_1 = B \lor D \lor \neg (A \land C) \\ \varphi_2 = \neg B \rightarrow C & \varphi_2 = B \lor C \\ \varphi_3 = \neg A \rightarrow D & \varphi_3 = A \lor D \\ \varphi_4 = \neg B & \varphi_4 = \neg B \\ \psi = D & \psi = D \end{array}$

Some schemes are valid in terms of entailment:

$$\varphi \rightarrow \psi$$

$$\frac{\varphi}{\psi}$$
It can be verified that:
$$\varphi \rightarrow \psi, \varphi \models \psi$$
Analogously:
$$\varphi \rightarrow \psi, \neg \psi \models \neg \varphi$$

Modern formal logic: fundamentals

Formal language (symbolic)

A set of symbols, not necessarily *finite* Syntactic rules for composite formulae (wff)

Formal semantics

For <u>each</u> formal language, a *class* of structures (i.e. a class of *possible worlds*) In each possible world, <u>every</u> wff in the language is assigned a *value* In classical propositional logic, the set of values is the simplest: {1, 0}

Satisfaction, entailment

A wff is *satisfied* in a possible world if it is <u>true</u> in that possible world In classical propositional logic, iff the wff has value 1 in that world (Caution: the definition of *satisfaction* will become definitely more complex with *first order logic*)

Entailment is a relation between a set of wffs and a wff

This relation holds when all possible worlds satisfying the set also satisfy the wff

What we have seen so far

Propositional Logic [32]

Subtleties: object language and metalanguage

• The *object language* is L_P

It is the tool that we plan to use

It only contains the items just defined:

P, ¬, →, ∧, ∨, ↔, (,), plus syntactic rules (wff)

Metalanguage

Everything else we use to define the properties of the object language Small greek letters (α , β , χ , φ , ψ) will be used to denote a generic formula (wff) Capital greek letters (Γ , Δ , Σ) will be used to denote a <u>set of formulae</u> *Satisfaction, logical consequence* (see after): \models *Derivability* (see after): \vdash

Symbols for "iff" and "if and only if" (also "iff"): \Rightarrow , \Leftrightarrow

There are a few more symbols in the *metalanguage*, to be introduced during the course