Artificial Intelligence

Propositional Logic

Marco Piastra

Boolean algebras by examples

Start from a set of objects \boldsymbol{U}
and construct, in a bottom-up fashion, the collection X of all possible subsets of \boldsymbol{U}
Examples:

The collection \boldsymbol{X} is also called the power set of \boldsymbol{U} and is denoted as $2^{\boldsymbol{U}}$ (i.e. $\boldsymbol{X}=\mathbf{2}^{\boldsymbol{U}}$)

Consider the operations $\cup, \cap, \backslash \boldsymbol{U}$: union, intersection and absolute complement Any structure $<\boldsymbol{X}, \cup, \cap, \backslash \boldsymbol{U}, \varnothing, \boldsymbol{U}>$ is a Boolean algebra

Abstract Boolean Algebras

"This type of algebraic structure captures essential properties of both set operations and logic operations." [Wikipedia]
Any structure $<\boldsymbol{X}, \cup, \cap, \backslash \boldsymbol{U}, \varnothing, \boldsymbol{U}>$ is a Boolean algebra iff it has the following properties (for any $A, B, C \in X$):

$$
\begin{array}{ll}
A \cup A=A \cap A=A & \text { idempotence } \\
A \cup B=B \cup A, A \cap B=B \cap A & \text { commutativity } \\
A \cup(B \cup C)=(A \cup B) \cup C, A \cap(B \cap C)=(A \cap B) \cap C & \text { associativity } \\
A \cup(A \cap B)=A, A \cap(A \cup B)=A & \text { absorption } \\
A \cup(B \cap C)=(A \cup B) \cap(A \cup C), A \cap(B \cup C)=(A \cap B) \cup(A \cap C) & \text { distributivity } \\
\varnothing \cup A=A, \varnothing \cap A=\varnothing, \boldsymbol{U} \cup A=\boldsymbol{U}, \boldsymbol{U} \cap A=A & \text { special elements } \\
A \cup(A \backslash \boldsymbol{U})=\boldsymbol{U}, A \cap(A \backslash \boldsymbol{U})=\varnothing & \text { complement }
\end{array}
$$

Concrete examples

Any structure $<\boldsymbol{X}, \cup, \cap, \backslash \boldsymbol{U}, \varnothing, \boldsymbol{U}>$ is a Boolean algebra
iff it has the following properties (for any $A, B, C \in X$):
$A \cup A=A \cap A=A$
idempotence
$A \cup B=B \cup A, \quad A \cap B=B \cap A$
$A \cup(B \cup C)=(A \cup B) \cup C, \quad A \cap(B \cap C)=(A \cap B) \cap C$
$A \cup(A \cap B)=A, \quad A \cap(A \cup B)=A$
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C), \quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
$\varnothing \cup A=A, \quad \varnothing \cap A=\varnothing, \boldsymbol{U} \cup A=\boldsymbol{U}, \boldsymbol{U} \cap A=A$
$A \cup(A \backslash \boldsymbol{U})=\boldsymbol{U}, \quad A \cap(A \backslash \boldsymbol{U})=\varnothing$ commutativity associativity
absorption
distributivity special elements complement

For this structure $\quad A \cup A \backslash \boldsymbol{U}=\boldsymbol{U}$ properties can be checked directly

$$
\begin{aligned}
& A=\{a\} \\
& A \backslash \boldsymbol{U}=\{b, c\} \\
& A \cup A \backslash \boldsymbol{U}=\{a, b, c\}
\end{aligned}
$$

```
A\cap(A\cupB)=A
```

$A=\{b\}$
$B=\{c\}$
$A \cup B=\{b, c\}$
$A \cap(A \cup B)=\{b\}$

Concrete examples

Any structure $<\boldsymbol{X}, \cup, \cap, \backslash \boldsymbol{U}, \varnothing, \boldsymbol{U}>$ is a Boolean algebra
iff it has the following properties (for any $A, B, C \in X$):

$$
\begin{aligned}
& A \cup A=A \cap A=A \\
& A \cup B=B \cup A, \quad A \cap B=B \cap A \\
& A \cup(B \cup C)=(A \cup B) \cup C, \quad A \cap(B \cap C)=(A \cap B) \cap C \\
& A \cup(A \cap B)=A, \quad A \cap(A \cup B)=A \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C), \quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& \varnothing \cup A=A, \quad \varnothing \cap A=\varnothing, \boldsymbol{U} \cup A=\boldsymbol{U}, \boldsymbol{U} \cap A=A \\
& A \cup(A \backslash \boldsymbol{U})=\boldsymbol{U}, \quad A \cap(A \backslash \boldsymbol{U})=\varnothing \\
& \text { idempotence } \\
& \text { commutativity } \\
& \text { associativity } \\
& \text { absorption } \\
& \text { distributivity } \\
& \text { special elements } \\
& \text { complement }
\end{aligned}
$$

De Morgan's laws

Concrete examples

Any structure $<\boldsymbol{X}, \cup, \cap, \backslash \boldsymbol{U}, \varnothing, \boldsymbol{U}>$ is a Boolean algebra
iff it has the following properties (for any $A, B, C \in X$):

$$
\begin{array}{ll}
A \cup A=A \cap A=A & \text { idempotence } \\
A \cup B=B \cup A, A \cap B=B \cap A & \text { commutativity } \\
A \cup(B \cup C)=(A \cup B) \cup C, A \cap(B \cap C)=(A \cap B) \cap C & \text { associativity } \\
A \cup(A \cap B)=A, A \cap(A \cup B)=A & \text { absorption } \\
A \cup(B \cap C)=(A \cup B) \cap(A \cup C), A \cap(B \cup C)=(A \cap B) \cup(A \cap C) & \text { distributivity } \\
\varnothing \cup A=A, \varnothing \cap A=\varnothing, \boldsymbol{U} \cup A=\boldsymbol{U}, \boldsymbol{U} \cap A=A & \text { special elements } \\
A \cup(A \backslash \boldsymbol{U})=\boldsymbol{U}, A \cap(A \backslash \boldsymbol{U})=\varnothing & \text { complement }
\end{array}
$$

Sometimes we fail...

$$
\begin{aligned}
& A \backslash \boldsymbol{U} \cup B=\boldsymbol{U} \\
& A=\{a\} \\
& A \backslash \boldsymbol{U}=\{b, c\} \\
& B=\{b\} \\
& A \backslash \boldsymbol{U} \cup B=\{b, c\}
\end{aligned}
$$

* Ouch!

This is NOT
true in general
It is only valid when
$A \subseteq B$

Which Boolean algebra for logic?

* Given that all boolean algebras share the same properties (see before) we can adopt the simplest one as reference, namely the one based on $\boldsymbol{X}=\{\boldsymbol{U}, \varnothing\}$ i.e. a two-valued algebra: $\{$ nothing, everything $\}$ or $\{$ false, true $\}$ or $\{\perp, T\}$ or $\{0,1\}$
- Algebraic structure
$<\{0,1\}, O R, A N D, N O T, 0,1>$
- Boolean functions and truth tables

Boolean functions: $f:\{0,1\}^{n} \rightarrow\{0,1\}$
$A N D, O R$ and NOT are boolean functions, they are defined via truth tables

A	B	$O R$
0	0	0
0	1	1
1	0	1
1	1	1

A	B	$A N D$
0	0	0
0	1	0
1	0	0
1	1	1

A	NOT
0	1
1	0

Composite functions

Truth tables can be defined also for composite functions
For example, to verify logical laws

De Morgan's laws						These columns are identical	
						\square	
	A	B	NOT A	NOT B	A OR B	NOT(A OR B)	NOT A AND NOT B
	0	0	1	1	0	1	1
	0	1	1	0	1	0	0
	1	0	0	1	1	0	0
	1	1	0	0	1	0	0

Adequate basis

- How many basic boolean functions do we need to define any boolean function?

^	A_{1}	A_{2}	...	A_{n}	$f\left(A_{1}, A_{2}, \ldots, A_{n}\right)$
	0	0	...	0	f_{1}
合	0	0	...	1	f_{2}
幺

\checkmark	1	1	...	1	$f_{2}{ }^{\text {n }}$

Just $O R, A N D$ and $N O T$: any other function can be expressed as composite function
In the generic truth table above:

- For each row where $f=1$, we compose by $A N D$ the n input variables taking either A_{i} when the i-th value is 1 , or $\neg A_{i}$ when i-th value is 0
- We compose by $O R$ all the composed expression obtained in the previous step

Other adequate basis

Also $\{O R, N O T\}$ o $\{A N D, N O T\}$ sono basi adeguate
An adequate basis can be obtained by just one 'ad hoc' function: NOR or NAND

A	B	A NOR B				
0	0	1				
0	1	0				
1	0	0				
1	1	0	\quad	A	B	A NAND B
:---:	:---:	:---:	:---:			
0	0	1				
0	1	1				
1	0	1				
1	1	0				

- Two remarkable functions: implication and equivalence

Logicians prefer the basis $\{I M P, N O T\}$

A	B	A IMP B
0	0	1
0	1	1
1	0	0
1	1	1

Identities:
A IMP B $=$ NOT A OR B

A	B	$A E Q U B$
0	0	1
0	1	0
1	0	0
1	1	1

$A E Q U B=(A \operatorname{IMP} B) \operatorname{AND}(B \operatorname{IMP} A)$

Propositional logic

i.e. the simplest of 'classical' logics

- Propositions

We consider all possible worlds that can be described via atomic propositions
"Today is Friday"
"Turkeys are birds with feathers"
"Man is a featherless biped"

- Formal language

A precise and formal language in which propositions are the atoms
(i.e. no intention to represent the internal structure of propositions)

Atoms can be composed in complex formulae via logical connectives

- Formal semantics

A class of formal structures, each representing a possible world Fundamental: in each possible world, each formula of the language is either true or false

- Atoms are given a truth value (i.e. false, true)
- Logical connectives are associated to boolean functions: each formula corresponds to a functional composition in which atoms are the arguments (truth-functionality)

The class of propositional, semantic structures

They will define the meaning of the formal language (to be defined)
Each possible world is a structure $<\{0,1\}, \boldsymbol{P}, v>$

$\{0,1\}$ are the truth values

\boldsymbol{P} is the signature of the formal language: a set of propositional symbols
v is a function : $\boldsymbol{P} \rightarrow\{0,1\}$ assigning truth values to the symbols in \boldsymbol{P}

Propositional symbols (signature)

Each symbol in \boldsymbol{P} stands for an actual proposition (in natural language)
In the simple convention, we use the symbols A, B, C, D, \ldots
Caution: \boldsymbol{P} is not necessarily finite

Possible worlds

The class of structures contains all possible worlds:

$$
\begin{aligned}
& <\{0,1\}, \boldsymbol{P}, v> \\
& <\{0,1\}, \boldsymbol{P}, v^{\prime}> \\
& <\{0,1\}, \boldsymbol{P}, v^{\prime \prime}>
\end{aligned}
$$

Each class of structure shares \boldsymbol{P} and $\{0,1\}$
The functions v are different: the assignment of truth values varies, depending on the possible world If \boldsymbol{P} is finite, there are only finitely many distinct possible worlds (actually $2^{(\boldsymbol{P} \boldsymbol{P}}$)

Propositional language

i.e. how we describe the world, by propositions

- In a propositional language L_{P}

A set \boldsymbol{P} of propositional symbols: $\boldsymbol{P}=\{A, B, C, \ldots\}$
Two (primary) logical connectives: \neg, \rightarrow
Three (derived) logical connectives: $\wedge, \vee, \leftrightarrow$
Parenthesis: (,) (there are no precedence rules in this language)

- Well-formed formulae (wff)

A set of syntactic rules
The set of all the wff of L_{P} is denoted as $\operatorname{wff}\left(L_{P}\right)$
$A \in \boldsymbol{P} \Rightarrow A \in \operatorname{wff}\left(L_{P}\right)$
$\varphi \in \mathrm{wff}\left(L_{P}\right) \Rightarrow(\neg \varphi) \in \mathrm{wff}\left(L_{P}\right)$
$\varphi, \psi \in \operatorname{wff}\left(L_{P}\right) \Rightarrow(\varphi \rightarrow \psi) \in \operatorname{wff}\left(L_{P}\right)$
$\varphi, \psi \in \operatorname{wff}\left(L_{P}\right) \Rightarrow(\varphi \vee \psi) \in \operatorname{wff}\left(L_{P}\right), \quad(\varphi \vee \psi) \Leftrightarrow((\neg \varphi) \rightarrow \psi)$
$\varphi, \psi \in \operatorname{wff}\left(L_{P}\right) \Rightarrow(\varphi \wedge \psi) \in \operatorname{wff}\left(L_{P}\right), \quad(\varphi \wedge \psi) \Leftrightarrow(\neg(\varphi \rightarrow(\neg \psi)))$
$\varphi, \psi \in \operatorname{wff}\left(L_{P}\right) \Rightarrow(\varphi \leftrightarrow \psi) \in \operatorname{wff}\left(L_{P}\right), \quad(\varphi \leftrightarrow \psi) \Leftrightarrow((\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi))$

Semantics: interpretations

- Composite (i.e. truth-functional) semantics for wffs

Given a possible world $<\{0,1\}, \boldsymbol{P}, v>$
the function $v: \boldsymbol{P} \rightarrow\{0,1\}$ can be extended to assign a value to every wff
Each logical connective is associated to a binary (i.e. boolean) function:

```
\(v(\neg \varphi)=\operatorname{NOT}(v(\varphi))\)
\(v(\varphi \wedge \psi)=\operatorname{AND}(v(\varphi), v(\psi))\)
\(v(\varphi \vee \psi)=\operatorname{OR}(v(\varphi), v(\psi))\)
\(v(\varphi \rightarrow \psi)=\operatorname{OR}(\operatorname{NOT}(v(\varphi)), v(\psi)) \quad\) (also \(\operatorname{IMP}(v(\varphi), v(\psi)))\)
\(v(\varphi \leftrightarrow \psi)=\operatorname{AND}(\operatorname{OR}(\operatorname{NOT}(v(\varphi)), v(\psi)), \operatorname{OR}(\operatorname{NOT}(v(\psi)), v(\varphi)))\)
```

- Interpretations

Function v (extended as above) assigns a truth value to each $\varphi \in \operatorname{wff}\left(L_{P}\right)$

$$
v: \operatorname{wff}\left(L_{P}\right) \rightarrow\{0,1\}
$$

Then v is said to be an interpretation of L_{P}
Note that the truth value of any wff φ is univocally determined by the values assigned to each symbol in the signature \boldsymbol{P}

Sometimes we will use just v instead of $\langle\{0,1\}, \boldsymbol{P}, v\rangle$

Satisfaction, models

- Possible worlds and truth tables

Examples: $\varphi=(A \vee B) \wedge C$
Different rows different worlds

Caution: in each possible world every $\varphi \in \operatorname{wff}\left(L_{P}\right)$ has a truth value

A	B	C	$A \vee B$	$(A \vee B) \wedge C$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

A possible world satisfies a wff φ iff $v(\varphi)=1$
We also write $<\{0,1\}, \boldsymbol{P}, v>\vDash \varphi$
In the truth table above, the rows that satisfy φ are in gray
Such possible world v is also said to be a model of φ
By extension, a possible world satisfies (i.e. is model of) a set of wff $\Gamma=\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right\}$ iff v satisfies (i.e. is model of) each of its wff $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$

Sometimes we will use $v \vDash \Gamma$ instead of $\langle\{0,1\}, \boldsymbol{P}, v\rangle \vDash \Gamma$

Tautologies, contradictions

- A tautology

Is a (propositional) wff that is always satisfied
It is also said to be valid Any wff of the type $\varphi \vee \neg \varphi$ is a tautology

- A contradiction

Is a (propositional) wff, that cannot be satisfied
Any wff of the type $\varphi \wedge \neg \varphi$ is a contradiction

Note:

A	$A \wedge \neg A$	$A \vee \neg A$
0	0	1
1	0	1

A	B	$(\neg A \vee B) \vee(\neg B \vee A)$
0	0	1
0	1	1
1	0	1
1	1	1

A	B	$\neg((\neg A \vee B) \vee(\neg B \vee A))$
0	0	0
0	1	0
1	0	0
1	1	0

- Not all wffs are either tautologies or contradictions
- If φ is a tautology then $\neg \varphi$ is a contradiction and vice-versa

Formulae and subsets

- Consider the set W of all possible worlds

Each wff of L_{P} corresponds to a subset of W
i.e. the subset of possible worlds that satisfy it

For example, φ corresponds to $\{v: v(\varphi)=1\} \quad$ (it can be written also as $\{v: v \vDash \varphi\}$)
The corresponding subset may be empty (i.e. if φ is a contradiction)
or it may coincide with W (i.e if φ is a tautology)

The set of all possible worlds

Formulae and subsets

- Consider the set W of all possible worlds

Each wff of L_{P} corresponds to a subset of W
i.e. the subset of possible worlds that satisfy it

For example, φ corresponds to $\{v: v(\varphi)=1\} \quad$ (it can be written also as $\{v: v \vDash \varphi\}$)
The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

The set of all possible worlds

" φ is a tautology"
"any possible world in W is a model of φ "
" φ is (logically) valid"

Furthermore:
" φ is satisfiable"
" φ is not falsifiable"

Formulae and subsets

- Consider the set W of all possible worlds

Each wff of L_{P} corresponds to a subset of W
i.e. the subset of possible worlds that satisfy it

For example, φ corresponds to $\{v: v(\varphi)=1\} \quad$ (it can be written also as $\{v: v \vDash \varphi\}$)
The corresponding subset may be empty (i.e. if φ is a contradiction)
or it may coincide with W (i.e if φ is a tautology)

The set of all possible worlds

" φ is a contradiction"
"none of the possible worlds in W is a model of φ "
" φ is not (logically) valid"

Furthermore:
" φ is not satisfiable"
" φ is falsifiable"

Formulae and subsets

- Consider the set W of all possible worlds

Each wff of L_{P} corresponds to a subset of W
i.e. the subset of possible worlds that satisfy it

For example, φ corresponds to $\{v: v(\varphi)=1\} \quad$ (it can be written also as $\{v: v \vDash \varphi\}$)
The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

The set of all possible worlds

" φ is neither a contradiction nor a tautology"
"some possible worlds in W are model of φ, others are not"
" φ is not (logically) valid"

Furthermore:
" φ is satisfiable"
" φ is falsifiable"

About formulae and their hidden relations

- Hypothesis:

```
\(\varphi_{1}=B \vee D \vee \neg(A \wedge C)\)
    "Sally likes Harry" OR "Harry is happy"
    OR NOT ("Harry is human" AND "Harry is a featherless biped")
\(\varphi_{2}=B \vee C\)
    "Sally likes Harry" OR "Harry is a featherless biped"
\(\varphi_{3}=A \vee D\)
    "Harry is human" OR "Harry is happy"
\(\varphi_{4}=\neg B\)
    NOT "Sally likes Harry"
```

- Thesis:
$\psi=D$
"Harry is happy"

Is there any logical relation between hypothesis and thesis?

And among the propositions in the hypothesis?

Logical consequence

The overall truth table for the wff in the example

$$
\begin{aligned}
& \varphi_{1}=B \vee D \vee \neg(A \wedge C) \\
& \varphi_{2}=B \vee C \\
& \varphi_{3}=A \vee D \\
& \varphi_{4}=\neg B \\
& \hline \psi=D
\end{aligned}
$$

All the possible worlds that satisfy $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\}$ satisfy ψ as well

A	B	C	D	φ_{1}	φ_{2}	φ_{3}	φ_{4}	ψ
0	0	0	0	1	0	0	1	0
0	0	0	1	1	0	1	1	1
0	0	1	0	1	1	0	1	0
0	0	1	1	1	1	1	1	1
0	1	0	0	1	1	0	0	0
0	1	0	1	1	1	1	0	1
0	1	1	0	1	1	0	0	0
0	1	1	1	1	1	1	0	1
1	0	0	0	1	0	1	1	0
1	0	0	1	1	0	1	1	1
1	0	1	0	0	1	1	1	0
1	0	1	1	1	1	1	1	1
1	1	0	0	1	1	1	0	0
1	1	0	1	1	1	1	0	1
1	1	1	0	1	1	1	0	0
1	1	1	1	1	1	1	0	1

- This is the relation of logical consequence: $\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4} \vDash \psi$ (also logical entailment or entailment)

Formulae, subsets and entailment

- Consider the set of all possible worlds W

All possible worlds

"All possible worlds that are model of ψ "

Formulae, subsets and entailment

- Consider the set of all possible worlds W

All possible worlds

"All possible worlds that are model of φ_{1} "
$\left\{\varphi_{1}\right\} \not \vDash \psi$
because the set of models of $\left\{\varphi_{1}\right\}$
is not contained in the set of models of ψ

Formulae, subsets and entailment

- Consider the set of all possible worlds W

All possible worlds

"All possible worlds that are models of φ_{2} "
$\left\{\varphi_{1}, \varphi_{2}\right\} \not \vDash \psi$
because the set of models of $\left\{\varphi_{1}, \varphi_{2}\right\}$ (i.e. the intersection of the two subsets) is not contained in the set of models of ψ

Formulae, subsets and entailment

- Consider the set of all possible worlds W

All possible worlds

"All possible worlds that are models of φ_{3} "
$\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\} \not \vDash \psi$
because the set of models of $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\}$
is not contained in the set of models of ψ

Formulae, subsets and entailment

- Consider the set of all possible worlds W

All possible worlds

"All possible worlds that are models of φ_{4} "
$\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\} \models \psi$
Because the set of models of $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\}$
is contained in the set of models of ψ

Formulae, subsets and entailment

- Consider the set of all possible worlds W

All possible worlds

"All possible worlds that are models of φ_{4} "
$\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\} \models \psi$
Because the set of models of $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\}$ is contained in the set of models of ψ

In this case, all the wffs $\varphi 1, \varphi 2, \varphi 3, \varphi 4$ are needed for the relation of entailment to hold

Symmetric entailment = logical equivalence

- Equivalence

Let φ and ψ be wffs such that:
$\varphi \vDash \psi$ e $\psi \models \varphi$
The two wffs are also said to be logically equivalent
In symbols: $\varphi \equiv \psi$

- Substitutability

Two equivalent wffs have exactly the same models
In terms of entailment, equivalent wffs are substitutable

> (even as sub-formulae)

In the example: $\quad\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\} \vDash \psi$

$$
\begin{aligned}
& \varphi_{1}=B \vee D \vee \neg(A \wedge C) \\
& \varphi_{2}=B \vee C \\
& \varphi_{3}=A \vee D \\
& \varphi_{4}=\neg B \\
& \psi=D
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{1}=B \vee D \vee(A \rightarrow \neg C) \\
& \varphi_{2}=B \vee C \\
& \varphi_{3}=\neg A \rightarrow D \\
& \varphi_{4}=\neg B \\
& \psi=D
\end{aligned}
$$

Implication

The wffs of the problem can be re-written using equivalent expressions:
(using the basis $\{\rightarrow, \neg\}$)

$$
\begin{array}{ll}
\varphi_{1}=C \rightarrow(\neg B \rightarrow(A \rightarrow D)) & \varphi_{1}=B \vee D \vee \neg(A \wedge C) \\
\varphi_{2}=\neg B \rightarrow C & \varphi_{2}=B \vee C \\
\varphi_{3}=\neg A \rightarrow D & \varphi_{3}=A \vee D \\
\varphi_{4}=\neg B & \varphi_{4}=\neg B \\
\psi=D & \psi=D
\end{array}
$$

- Some schemes are valid in terms of entailment:

$\varphi \rightarrow \psi$
φ
ψ

It can be verified that:

$$
\varphi \rightarrow \psi, \varphi \models \psi
$$

Analogously:

$$
\varphi \rightarrow \psi, \neg \psi \vDash \neg \varphi
$$

Modern formal logic: fundamentals

- Formal language (symbolic)

A set of symbols, not necessarily finite
Syntactic rules for composite formulae (wff)

- Formal semantics

For each formal language, a class of structures (i.e. a class of possible worlds)
In each possible world, every wff in the language is assigned a value
In classical propositional logic, the set of values is the simplest: $\{1,0\}$

- Satisfaction, entailment

A wff is satisfied in a possible world if it is true in that possible world
In classical propositional logic, iff the wff has value 1 in that world
(Caution: the definition of satisfaction will become definitely more complex with first order logic)
Entailment is a relation between a set of wffs and a wff
This relation holds when all possible worlds satisfying the set also satisfy the wff

What we have seen so far

Subtleties: object language and metalanguage

- The object language is L_{P}

It is the tool that we plan to use
It only contains the items just defined:
$\boldsymbol{P}, \neg, \rightarrow, \wedge, \vee, \leftrightarrow,($,$) , plus syntactic rules (wff)$

- Metalanguage

Everything else we use to define the properties of the object language
Small greek letters ($\alpha, \beta, \chi, \varphi, \psi$) will be used to denote a generic formula (wff)
Capital greek letters (Γ, Δ, Σ) will be used to denote a set of formulae
Satisfaction, logical consequence (see after): \models
Derivability (see after): \vdash
Symbols for "iff" and "if and only if" (also "iff"): $\Rightarrow, \Leftrightarrow$

