
MACHINE LEARNING TECHNIQUES
APPLIED TO DEPENDENCY PARSING

Edoardo Maria Ponti

Theoretical and Applied Lingustics

University of Pavia

TABLE OF CONTENTS

 Dependency vs Constituency

 Treebanks

 Languages and Their Complexity

 Supervised Machine Learning

 A Case of Study: Medieval Latin

 Postprocessing Techniques: Revision and Combination

 New Improvements

WHY PARSING?

 Parsing natural language gives structure to a sentence, which in turn allows to access
its meaning.

 (A few) applications:

Data mining: extracting information (and storing in database)

Question answering and research engine

Automatic translation

Grammar checkers in text editors

DEPENDENCY VS CONSTITUENCY

 A constituency parser breaks a sentence into sub-phrases.

 Non-terminal nodes are phrase categories (e.g. Noun Phrase, Verb Phrase, etc.) and
the root S. Terminal nodes are words.

 Sentence thought of in Aristotelian terms as a subject and a predicate.

 Number of words > number of nodes.

 A dependency parser links words in a sentence and assign labels to these relations.

 Just terminal nodes. Labels mark grammatical functions (e.g. Subject, Predicate, etc.)

 Sentence thought of in Fregean terms as a central predicate with its argument.

 Number of words = number of nodes.

 Constituency Dependency

In last years, researchers tended to orient towards dependency parsing and

disjointed this task from natural language generation.

Different theoretical backgrounds underly the different representations.

Chomsky inspired constituency-based grammars, Tesnière dependency-based ones.

 Cer (2010)

 Dependency parsing is way faster than constituency parsing.

 Linear (at most, O(𝑛3)) complexity vs O(𝑛5) of CKY-style dynamic programming for
lexicalised models.

 Kahane (2012)

 Dependency parsing, contrary to constituency parsing, can deal with non-projectivity
(see further) without complex mechanisms such as transformation and movement.

 Furthermore, it is more close to the interface with semantics, and obey to valency
constraints and account for multi-word expressions.

 Finally, it is more grounded on cross-linguistic comparison. Some languages lack
constituency: this property is called non-configurationality.

DEPENDENCY TREEBANKS

 Dependency = an oriented relation between two words, a head and a dependent,
labelled by syntactic function.

 Tree = a set of the words and dependency relations of a sentence. The main
predicate is the root.

 Treebank = a collection of sentences with a syntactic annotation.

 Graphic tree format:

 Words = nodes

 Dependency relations = arrows and labels

 Linear order = precedence left-to-right

 CoNLL format:

 Devised for a shared task on parsing. That of 2007 edition is quite standard:

 Words = forms, one per row

 Word information = values of the attributes above, one per column

 Dependency relations = head and syntactic function (i.e. deprel) columns

 Linear order = id column

ID FORM LEMMA CPOSTAG POSTAG FEATS HEAD DEPREL

Julius Caesar’s De Bello Gallico (graphic tree format)

N
e
st

e
d

ne
ss

Linear order

1

2

3 4

Julius Caesar’s De Bello Gallico (CoNLL format)

 ID FORM LEMMA CPOSTAG POSTAG FEATS HEAD DEPREL

 1 Hi is P Pp PERS3|NUMBp|CASEn 8 sub _ _

 2 omnes omnis P Px NUMBp|GENDp|CASEn 1 atr _ _

 3 lingua lingua N Nb NUMBs|GENDf|CASEb 8 obl _ _

 4 institutis institutum N Nb NUMBp|GENDn|CASEb 8 obl _ _

 5 legibus lex N Nb NUMBp|GENDf|CASEb 8 obl _ _

 6 inter inter R R- INFLn 8 obl _ _

 7 se se P Pk PERS3|NUMBp|CASEa 6 obl _ _

 8 differunt differo V V- PERS3|NUMBp|TENSp 0 pred _ _

 Different standard annotation styles.

 Annotation style = 1) rules for head selection and 2) set of syntactic functions.

 Main ones = Prague (PRG) and Stanford (USD).

 Differences:

 1) Set member equivalence from Rosa et al. (2014)

PRG USD

Pred root

Sb nsubj, csubj, nsubjpass, csubjpass

Obj, Pnom, Atv, AtvV, AuxR obj, ccomp, xcomp

Adv, AuxO, AuxY, AuxZ advmod, nmod, advcl, nfincl, mwe

Atr amod, nmod, nummod, relcl, nfincl

 2) Handling of specific constructions:

The coordinating conjunction (here ‘and’)

is explicit. Otherwise, if implicit,

members are coordinated with ellipsis.

ANCIENT INDO-EUROPEAN LANGUAGES
AND THEIR COMPLEXITY

 Treebanks by individual language

 in (quasi-)Prague annotation style:

 Thomas Aquinas’ Medieval Latin = Index Thomisticus Treebank (IT-TB)

 Classical and Late Latin = Latin Dependency Treebank (LDT)

 Ancient Greek = Ancient Greek Treebank (AGT)

 Armenian, Gothic, Old Church Slavonic = Pragmatic Resources in Old Indo-European
Languages Treebank (PROIEL)

 According to Mambrini & Passarotti (2013),

 ancient indo-european languages have:

 free (better, pragmatically constrained) word order.

 discontinuous constituents.

 rich fusive morphology. A single morpheme often encodes more than one meaning.
E.g. in Hēródotos, -os means: singular number, nominative case, masculine gender.

 This results in a high degree of non-projectivity.

 Non-projectivity = (informal) Presence of crossing arc pairs in a sentence.

 Rate in Ancient Greek > Latin > modern languages.

 Graphically non-projectivity if present can be visualized in two ways:

 1) Imagine to project all nodes down to the lowest layer of nestedness.

 At least one of them crosses at least one dependency arc.

 2) Compact a tree to a single layer. Dependency arcs cross.

 From Mambrini & Passarotti (2013):

 𝑖 → 𝑗 = j (child) depends on i (parent)

 (𝑖, 𝑗) = linear array of nodes from i to j

 Descendants = set of nodes reachable through n arcs from i

 𝑆𝑢𝑏𝑡𝑟𝑒𝑒𝑖 = restriction of T (tree) to the descendants of i

 Projectivity = 𝑖 → 𝑗 ∧ 𝑣 ∈ 𝑖, 𝑗 ⇒ 𝑣 ∈ 𝑆𝑢𝑏𝑡𝑟𝑒𝑒𝑖

 Each dependency subtree should cover a linearly contiguous region of the sentence.

 If v violates this condition, v is ‘in a gap’.

 Non-contiguous regions are highlighted in the previous examples: and

Language Total edges # Non-proj. edges % Non-proj edges

Ancient Greek 301848 45731 15,15

Czech 1105437 23570 2,13

Language Trees gd0 gd1 gd2 gd3 gd 4 ed0 ed1 ed2 ed3 ed4

Ancient Greek 24825 25,2 68,3 6,1 7 0,3 25,2 43,7 14,2 7,1 3,9

Czech 73088 76,9 22,7 0,4 0 0 76.85 22,7 0,4 0,1 0

Edge-degree = number of nodes in a gap for a given non-projective arc.

Gap-degree = number of intervals in a block.

Block = longest non-empty sequence of nodes chained by dependencies.

Interval = distance between a head and a dependent is linearly more than 1.

E.g. the sequence norit-canitiem-meam is interrupted twice, by gloria and norit.

Hence gap-degree = 2

The dependency norit-canitiem is interrputed by gloria. Hence edge-degree = 1.

SUPERVISED MACHINE LEARNING

 Hladká & Holub (2015)

 From training data computer learns a predictor, a model for new data, representing
the “essential knowledge”.

 Useful for e.g. dependency parsing = guessing the correct dependency tree for a
given sentence.

 Dependency parsing is a classification task: the target values to be guessed are
discrete (vs regression if continuous).

 Features are observable properties of the examples. Feature vectors are ordered
lists of features.

 A data instance is a feature vector paired with a target value. Training data is a set
of data instances.

Real
objects

Target
value

Feature
vectors

 Supervised Machine Learning for Dependency Parsing:

 Data instances = treebanks, to be divided into training and test sets.

 Feature vectors = lemmas, part-of-speech tags, morphological features, etc…

 Target values = head and deprel.

 What is the essential knowledge a machine should learn for parsing? It depends on
the algorithm. When it observes some feature, it should perform the correct action or
assign the correct probability to alternative dependencies.

 Supervised Machine Learning techinques are language-independent (vs rule-based).

 If we can handle complex languages, even more so we can handle other languages in
their real manifestations inside texts.

 𝑥𝑖 = feature vectors, 𝑦𝑖 = true values, 𝑧𝑖 = predicted values.

 ℎ∗ = prediction function, the best among the hypotheses 𝐻.

 Ideally, 𝑧𝑖 = ℎ∗ 𝑥𝑖 = 𝑦𝑖

 The aim is finding ℎ∗, searching through the hypothesis space.

 Loss function 𝐿(𝑧, 𝑦) = cost of predicting z when y is true.

 E.g. zero-one loss = 𝐼 𝑧𝑖 ≠ 𝑦𝑖 , (𝑧𝑖 ≠ 𝑦𝑖) → 𝐼 = 1, (𝑧𝑖 = 𝑦𝑖) → 𝐼 = 0

 The aim can be restated as minimizing the average loss.

 Sample error = average zero-one loss.

 Generalization error = how bad ℎ∗ generalizes beyond training data to new data.

 Predictor building involves the choice of algorithm, its parameters and features. After
this, a model is created feeding training data to the machine.

 Then predictor is tested against the test data. Randomly chosen from the whole data
and distinct from training data.

 Final stage is evaluation, through comparison of predicted and real values in test
data. During this phase, these metrics are used to assess the accuracy:

 Labeled Attachment Score (LAS) = correct heads and deprels guessed / total heads
and deprels

 Unlabeded Attachment Score (UAS) = correct heads guessed / total heads

AN EXAMPLE OF PARSER: DESR

 Attardi (2006): deterministic-choice and linear. Trees are built bottom-up, either left-
to-right (LR) or right-to-left (RL).

 Shift-reduce = algorithm processes each token of the sentence in linear order. Local
optimization criterion to fit the data. Best overall performarce, but less accurate with
complex (e.g. non-projective) structures.

 Modular = several learning algorithm available, e.g. Support Vector Machine (SVM),
Maximum Entropy (ME), MultiLayer Perceptron (MLP).

 State of the parser = 〈S, I, T, A〉 = stack, remaining tokens, temporary tokens in the
stack, arc relation.

 W = words of the sentence

 Initial state = 〈(), W, (), ()〉

 End state = 〈S, (), (), A〉

 Shift = in a configuration 〈S, n|I, T, A〉, pushes n to the stack, producing the
configuration 〈n|S, I, T, A〉.

 Right = in a configuration 〈s|S, n|I, T, A〉, adds an arc from s to n and pops s from
the stack, producing the configuration 〈S, n|I, T, A∪{(s, r, n)}〉.

 Left = in a configuration 〈s|S, n|I, T, A〉, adds an arc from n to s, pops n from input,
pops s from the stack and moves it back to I, producing the configuration 〈S, s|I, T,
A∪{(n, r, s)}〉.

 Plus, six others to handle non-projectivity…

 Essential knowledge consists in performing the correct actions and chosing the correct
relation label given an input sentence in a language. Actions and labelling are
performed deterministically according to a feature model. Better the model, better
the prediction.

 A simplified example: parse of «Beauty is truth»

 is

 Pred

Beauty

 Sb

 truth

Pnom

Stack Input Action

Beauty is truth Shift

Beauty is truth Right

is truth Shift

is truth Left

is

‘is’ corresponds to a predicate: as it is the root, it means that the sentence is complete.

In other terms, the last state is a final state, hence the sequence is accepted.

The table accounts only for arc creation: labelling takes place simultaneously with Left

and Right but here is shadowed for sake of simplicity. Also, I abstracted from the

temporary stack column, useful for non-projective trees only.

The model posits as conditions for a given action the presence in input and stack of

specific elements with specific properties.

A CASE OF STUDY: MEDIEVAL LATIN

Passarotti & Ruffolo (2010) Passarotti & dell’Orletta (2010)

 DesR with Italian/Czech feature model DeSR with ad hoc feature model

Parser LAS UAS

DeSR 71,26 78,35

Malt 69,85 75,87

ISBN 68,97 77,79

MST 68,79 79,43

Data set Tokens

Training 61024

Test 7379

Data set Tokens

Training 44195

Test 5697

Feature Tokens

LEMMA -2 -1 0 1 2 3 prev(0) next(-1) leftChild(-1) leftChild(0) rightChild(-1) rightChild(0)

POSTAG -2 -1 0 1 2 3 prev(0) next(-1) leftChild(-1) leftChild(0) rightChild(-1) rightChild(0)

CPOSTAG -1 0 1 2

FEATS -1 0 1 2

DEPREL rightChild(-1)

HEAD -1 0

Filter = manual selection as a preprocessing step, independently by the algorithm.

Usefulness of tailor-made feature model:

Reduces overfitting, hence increases performance.

Reduces model dimension, hence complexity, hence computational time.

Improved model interpretability.

 Results on dataset of Passarotti & Ruffolo (2010)

Results on dataset of Passarotti & dell’Orletta (2010)

Dataset size has a great impact on performance!

 * Both experiments use Support Vector Machines (SVMs) as algorithm. SVMs represent
examples as points in space, maximizing the geometrical gap among separate classes. For non-
binary tasks, they are implicitly mapped to a multi-dimensional space.

Parser Algorithm Direction LAS UAS

DeSR SVM* LR 73,73 79,90

Parser Algorithm Direction LAS UAS

DeSR SVM LR 78,26 83,9

DeSR SVM RL 76,31 82,38

POSTPROCESSING TECHNIQUES:
REVISION…

 Attardi & Dell’Orletta, 2009

 Stacked parsing has two phases:

 1) Sentence is parsed with a low-performing algorithm.

 2) A second parser with high-performing algorithm learns from the output of 1) in
reverse mode (i.e. in opposite direction), using additional features.

 They adopted these names for stacked parsers:

 Rev2 = 1) ME LR 2) SVM RL

 Rev3 = 1) ME RL 2) SVM LR

Parser Predictor LAS UAS

DeSR Rev2 77,30 82,82

DeSR Rev3 79,27 84,63

…AND COMBINATION

 Consider a set of predictors.

 The ensemble of their outputs will outperform the output of a single predictor, given a
sufficient accuracy and diversity of the set members.

 Ideally, predictors should be statistically independent. But: too much data required.

 Post-processing technique. Outputs with predicted values are combined.

 Surdeanu and Manning (2010)

 The most common function is based on unweighted voting. The value voted by the
majority is selected. As accurate as more complex functions.

 Linear-time re-parsing algorithms guarantee well-formed dependency trees.

Combined predictors LAS UAS

SVM-rev3 + SVM-RL + SVM-LR 80,02 85,23

SVM-rev2 + SVM-rev3 + SVM-RL 79,82 85,08

SVM-rev2 + SVM-rev3 + SVM-LR 79,21 84,67

SVM-rev2 + SVM-RL + SVM-LR 78,91 84,36

This is the state of the art in literature!

NEW IMPROVEMENTS

 Key ideas:

 Combining not different predictors from the same parser, but different parsers.

 Training over a far richer dataset.

 Experimenting new feature models.

 Parser #2: MATE graph-based

 Bohnet (2010)

 Graph-based parser = each sentence is processed as a whole. A global optimization
criterion is adopted to best fit the data.

 Multi-digraphs (MDG) are sets of nodes V and oriented arcs A, allowing multiple arcs
between any pair of nodes.

 A spanning tree (ST) is a subgraph of a MDG, G’ = V’, A’) such that:

 1) The set of nodes is identical. V = V’

 2) The set of arcs of MDG includes that of ST. A ⊆ A’

 3) The cardinality of its arcs equals that of its nodes minus 1.|A’| = |V’| - 1

 4) G’ is an acyclic graph.

 Given an MDG, let T be the set of its STs.

 Maximum spanning tree problem is finding the member of T that maximizes a given
function.

 In dependency parsing terms, given a set of possible trees for an imput sentence, a
predictor should select the most plausible one.

 How is the problem solved? Decomposing the tree into factors and weighting them.

 Factor = head, dependent, label. Quadratic complexity.

 Example taken from MacDonald and Nivre’s slides:

 In MATE graph-based parser:

 2nd-order maximum spanning tree (MST) + passive-aggressive perceptron.

 2nd-order uses more factors (grandchild, label to sisters…). Complexity = 𝑂(𝑛4).

 Passive-aggressive perceptron: each iteration weight realignment becomes softer.

 Plus, non-projective approximation algorithm and a feature extraction component.

 Marries high accuracy with fast parsing.

 Algorithm of graph-based MATE-tools

 y = gold

 for n 1 to E // iteration over the training epochs

 for i 1 to I // iteration over the training examples

 k (n − 1) * I + i

 γ E * I − k + 2 // passive-aggressive weigths

 A extract-features-&-calculate-arrays(i, w)

 p predict-projective-parse-tree(A)

 a non-projective-approximator(p,A)

 update w, v according to ∆(p, y) and γ

 w = v/(E * I) // average

 Parser #3 = MATE transition-based

 Bohnet et al. (2013)

 Shift-Reduce. Operations Left-Arc, Right-Arc, Shift, Swap (for non-projectivity).

 Designed for free-word-order and richly inflected languages.

 Joint morphological disambiguation and dependency parsing (vs pipeline).

 4 labelling functions for pos, morphological features, lemma and dependency relation

 A transition sequence is an ordered set of state-transition pairs.

 Candidate parses for a sentences are scored via the transition system leading to
them, directed by features and weights.

 Uses beam search for exploring the search space (here very large!) of parses, better
than greedy deterministic algorithms. In a graph, expands most promising node up to
a limit (or up to when gold parse is pruned from the beam in learning).

New (simplified and better-performing) feature model:

A wider dataset. Summa contra gentiles partes 1-2:

Feature Value

LEMMA -2 -1 0 1 2 3 prev(0) next(-1) leftChild(-1) leftChild(0) rightChild(-1) rightChild(0)

POSTAG -2 -1 0 1 2 3 prev(0) next(-1) leftChild(-1) leftChild(0) rightChild(-1) rightChild(0)

CPOSTAG -1 0 1 2

FEATS -1 0 1 2

DEPREL rightChild(-1)

HEAD -1 0

Dataset Tokens

Training 152210

Test 16935

 Results for single predictors:

 Results for combination:

Parser LAS UAS #

desr LR 79,91 85,97 1a

desr RL 81,36 87,2 1b

mate 76,75 84,41 2

joint (pre-lemmatized) 80,06 86,12 3

Combination LAS UAS

1b+3+1a+2 84,4 89,6

1b+3+1a 83,9 89,2

1b+1a+2 83,3 88,6

New best result!

+4,4% in LAS

+4,4% In UAS

compared with state of art.

BIBLIOGRAPHY

 Rosa, R., Mašek, J., Mareček, D., Popel, M., Zeman, D., & Žabokrtský, Z. (2014, May).
HamleDT 2.0: Thirty dependency treebanks stanfordized. In Proceedings of the 9th
International Conference on Language Resources and Evaluation (LREC 2014) (pp. 2334-2341).

 Mambrini, F., Passarotti, M. (2013). Non-projectivity in the Ancient Greek Dependency
Treebank. DepLing 2013, 177.

 Attardi, G. (2006, June). Experiments with a multilanguage non-projective dependency
parser. In Proceedings of the Tenth Conference on Computational Natural Language
Learning (pp. 166-170). Association for Computational Linguistics.

 Surdeanu, M., & Manning, C. D. (2010, June). Ensemble models for dependency parsing:
cheap and good?. In Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics (pp. 649-652). Association
for Computational Linguistics.

 Attardi, G., & Dell'Orletta, F. (2009, May). Reverse revision and linear tree
combination for dependency parsing. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, Companion Volume: Short Papers (pp. 261-
264). Association for Computational Linguistics.

 Passarotti, M. C., & Ruffolo, P. (2010). Parsing the Index Thomisticus Treebank. Some
preliminary results. In 15th International Colloquium on Latin Linguistics (pp. 714-725).
Innsbrucker Beiträge zur Sprachwissenschaft.

 Passarotti, M., & Dell’Orletta, F. (2010). Improvements in parsing the index
thomisticus treebank. Revision, combination and a feature model for medieval
Latin. Training, 2, 61-024.

 Bohnet, B. (2010, August). Very high accuracy and fast dependency parsing is not
a contradiction. In Proceedings of the 23rd International Conference on Computational
Linguistics (pp. 89-97). Association for Computational Linguistics.

 Bohnet, B. (2010, August). Very high accuracy and fast dependency parsing is not
a contradiction. In Proceedings of the 23rd International Conference on Computational
Linguistics (pp. 89-97). Association for Computational Linguistics.

 Cer, D. M., De Marneffe, M. C., Jurafsky, D., & Manning, C. D. (2010, May). Parsing
to Stanford Dependencies: Trade-offs between Speed and Accuracy. In LREC.

 Kahane, Sylvain. "Why to choose dependency rather than constituency for syntax:
a formal point of view." J. Apresjan, M.-C. L’Homme, L. Iomdin, J. Milićević, A.
Polguère, L. Wanner, eds., Meanings, Texts, and other exciting things: A Festschrift to
Commemorate the 80th Anniversary of Professor Igor A. Mel’čuk, Languages of Slavic
Culture, Moscow (2012): 257-272.

