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WHY PARSING? 

 Parsing natural language gives structure to a sentence, which in turn allows to access 
its meaning. 

  

 (A few) applications: 

Data mining: extracting information (and storing in database) 

Question answering and research engine 

Automatic translation 

Grammar checkers in text editors 

 



DEPENDENCY VS CONSTITUENCY 

 A constituency parser breaks a sentence into sub-phrases.  

 Non-terminal nodes are phrase categories (e.g. Noun Phrase, Verb Phrase, etc.) and 
the root S. Terminal nodes are words.  

 Sentence thought of in Aristotelian terms as a subject and a predicate.  

 Number of words > number of nodes. 

 A dependency parser links words in a sentence and assign labels to these relations. 

 Just terminal nodes. Labels mark grammatical functions (e.g. Subject, Predicate, etc.) 

 Sentence thought of in Fregean terms as a central predicate with its argument. 

 Number of words = number of nodes. 

  

  

  



    Constituency    Dependency 

 

In last years, researchers tended to orient towards dependency parsing and 

disjointed this task from natural language generation. 

 

Different theoretical backgrounds underly the different representations. 

Chomsky inspired constituency-based grammars, Tesnière dependency-based ones. 



 Cer (2010) 

 Dependency parsing is way faster than constituency parsing. 

 Linear (at most, O(𝑛3) ) complexity vs O(𝑛5) of CKY-style dynamic programming for 
lexicalised models. 

  

 Kahane (2012) 

 Dependency parsing, contrary to constituency parsing, can deal with non-projectivity 
(see further) without complex mechanisms such as transformation and movement. 

 Furthermore, it is more close to the interface with semantics, and obey to valency 
constraints and account for multi-word expressions. 

 Finally, it is more grounded on cross-linguistic comparison. Some languages lack 
constituency: this property is called non-configurationality. 



DEPENDENCY TREEBANKS 

 Dependency = an oriented relation between two words, a head and a dependent, 
labelled by syntactic function.  

  

 Tree = a set of the words and dependency relations of a sentence. The main 
predicate is the root. 

  

 Treebank = a collection of sentences with a syntactic annotation. 

  

  



 Graphic tree format: 

 Words = nodes 

 Dependency relations = arrows and labels 

 Linear order = precedence left-to-right 

  

 CoNLL format: 

 Devised for a shared task on parsing. That of 2007 edition is quite standard: 

  

 Words = forms, one per row 

 Word information = values of the attributes above, one per column 

 Dependency relations = head and syntactic function (i.e. deprel) columns 

 Linear order = id column 

  

  

  

ID FORM LEMMA CPOSTAG POSTAG FEATS HEAD DEPREL 



Julius Caesar’s De Bello Gallico (graphic tree format) 
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Julius Caesar’s De Bello Gallico (CoNLL format) 

  

  

 ID FORM LEMMA CPOSTAG POSTAG FEATS   HEAD DEPREL 

 1 Hi is P Pp PERS3|NUMBp|CASEn 8 sub _ _ 

 2 omnes omnis P Px NUMBp|GENDp|CASEn 1 atr _ _ 

 3 lingua lingua N Nb NUMBs|GENDf|CASEb 8 obl _ _ 

 4 institutis institutum N Nb NUMBp|GENDn|CASEb 8 obl _ _ 

 5 legibus lex N Nb NUMBp|GENDf|CASEb 8 obl _ _ 

 6 inter inter R R- INFLn   8 obl _ _ 

 7 se se P Pk PERS3|NUMBp|CASEa 6 obl _ _ 

 8 differunt differo V V- PERS3|NUMBp|TENSp 0 pred _ _ 



 Different standard annotation styles. 

 Annotation style = 1) rules for head selection and 2) set of syntactic functions. 

 Main ones = Prague (PRG) and Stanford (USD). 

 Differences: 

 1) Set member equivalence from Rosa et al. (2014) 

  
PRG USD 

Pred root 

Sb  nsubj, csubj, nsubjpass, csubjpass 

Obj, Pnom, Atv, AtvV, AuxR obj, ccomp, xcomp 

Adv, AuxO, AuxY, AuxZ  advmod, nmod, advcl, nfincl, mwe 

Atr  amod, nmod, nummod, relcl, nfincl 



  

 2) Handling of specific constructions: 

  

The coordinating conjunction (here ‘and’) 

is explicit. Otherwise, if implicit, 

members are coordinated with ellipsis. 



ANCIENT INDO-EUROPEAN LANGUAGES 
AND THEIR COMPLEXITY 

 Treebanks by individual language  

 in (quasi-)Prague annotation style: 

  

 Thomas Aquinas’ Medieval Latin = Index Thomisticus Treebank (IT-TB) 

 Classical and Late Latin = Latin Dependency Treebank (LDT) 

 Ancient Greek = Ancient Greek Treebank (AGT) 

 Armenian, Gothic, Old Church Slavonic = Pragmatic Resources in Old Indo-European 
Languages Treebank (PROIEL) 

  



 According to Mambrini & Passarotti (2013), 

 ancient indo-european languages have: 

  

 free (better, pragmatically constrained) word order. 

 discontinuous constituents. 

 rich fusive morphology. A single morpheme often encodes more than one meaning. 
E.g. in Hēródotos, -os means: singular number, nominative case, masculine gender. 

 

 This results in a high degree of non-projectivity. 

 Non-projectivity = (informal) Presence of crossing arc pairs in a sentence. 

 Rate in Ancient Greek > Latin > modern languages. 

  

  

  



 Graphically non-projectivity if present can be visualized in two ways: 

 1) Imagine to project all nodes down to the lowest layer of nestedness. 

 At least one of them crosses at least one dependency arc. 

 2) Compact a tree to a single layer. Dependency arcs cross. 

 From Mambrini & Passarotti (2013):  

  



  

 𝑖 → 𝑗 = j (child) depends on i (parent) 

 (𝑖, 𝑗) = linear array of nodes from i to j 

 Descendants = set of nodes reachable through n arcs from i 

 𝑆𝑢𝑏𝑡𝑟𝑒𝑒𝑖 = restriction of T (tree) to the descendants of i 

  

  

 Projectivity = 𝑖 → 𝑗 ∧ 𝑣 ∈ 𝑖, 𝑗  ⇒ 𝑣 ∈ 𝑆𝑢𝑏𝑡𝑟𝑒𝑒𝑖 

 Each dependency subtree should cover a linearly contiguous region of the sentence. 

 If v violates this condition, v is ‘in a gap’. 

 Non-contiguous regions are highlighted in the previous examples:         and  

  

  

  

  

  

  

  



Language Total edges # Non-proj. edges % Non-proj edges 

Ancient Greek 301848 45731 15,15 

Czech 1105437 23570   2,13 

Language Trees gd0 gd1 gd2 gd3 gd 4 ed0 ed1 ed2 ed3 ed4 

Ancient Greek 24825 25,2 68,3 6,1 7 0,3 25,2 43,7 14,2 7,1 3,9 

Czech 73088 76,9 22,7 0,4 0 0 76.85 22,7  0,4 0,1  0 

Edge-degree = number of nodes in a gap for a given non-projective arc. 

Gap-degree = number of intervals in a block. 

Block = longest non-empty sequence of nodes chained by dependencies. 

Interval = distance between a head and a dependent is linearly more than 1. 

 

E.g. the sequence norit-canitiem-meam is interrupted twice, by gloria and norit. 

Hence gap-degree = 2 

The dependency norit-canitiem is interrputed by gloria. Hence edge-degree = 1. 

 



SUPERVISED MACHINE LEARNING 

 Hladká & Holub (2015) 

 From training data computer learns a predictor, a model for new data, representing 
the “essential knowledge”. 

 Useful for e.g. dependency parsing = guessing the correct dependency tree for a 
given sentence. 

 Dependency parsing is a classification task: the target values to be guessed are 
discrete (vs regression if continuous). 

 Features are observable properties of the examples. Feature vectors are ordered 
lists of features. 

 A data instance is a feature vector paired with a target value. Training data is a set 
of data instances. 



Real 
objects 

Target 
value 

Feature 
vectors 



 Supervised Machine Learning for Dependency Parsing: 

  

 Data instances = treebanks, to be divided into training and test sets. 

 Feature vectors = lemmas, part-of-speech tags, morphological features, etc… 

 Target values = head and deprel. 

  

 What is the essential knowledge a machine should learn for parsing? It depends on 
the algorithm. When it observes some feature, it should perform the correct action or 
assign the correct probability to alternative dependencies. 

 Supervised Machine Learning techinques are language-independent (vs rule-based). 

 If we can handle complex languages, even more so we can handle other languages in  
their real manifestations inside texts. 

  

  

  



  

 𝑥𝑖 = feature vectors, 𝑦𝑖 = true values, 𝑧𝑖 = predicted values. 

 ℎ∗ = prediction function, the best among the hypotheses 𝐻. 

 Ideally, 𝑧𝑖 =  ℎ∗ 𝑥𝑖 = 𝑦𝑖 

 The aim is finding ℎ∗, searching through the hypothesis space. 

  

 Loss function 𝐿(𝑧, 𝑦) = cost of predicting z when y is true. 

 E.g. zero-one loss = 𝐼 𝑧𝑖  ≠  𝑦𝑖 , (𝑧𝑖  ≠  𝑦𝑖)  → 𝐼 = 1, (𝑧𝑖  =  𝑦𝑖) → 𝐼 = 0 

 The aim can be restated as minimizing the average loss. 



 Sample error = average zero-one loss. 

 Generalization error = how bad ℎ∗ generalizes beyond training data to new data. 

  



 Predictor building involves the choice of algorithm, its parameters and features. After 
this, a model is created feeding training data to the machine. 

  

 Then predictor is tested against the test data. Randomly chosen from the whole data 
and distinct from training data. 

  

 Final stage is evaluation, through comparison of predicted and real values in test 
data. During this phase, these metrics are used to assess the accuracy: 

  

 Labeled Attachment Score (LAS) = correct heads and deprels guessed / total heads 
and deprels 

 Unlabeded Attachment Score (UAS) = correct heads guessed / total heads 

  





AN EXAMPLE OF PARSER: DESR 

 Attardi (2006): deterministic-choice and linear. Trees are built bottom-up, either left-
to-right (LR) or right-to-left (RL). 

 Shift-reduce = algorithm processes each token of the sentence in linear order. Local 
optimization criterion to fit the data. Best overall performarce, but less accurate with 
complex (e.g. non-projective) structures. 

 Modular = several learning algorithm available, e.g. Support Vector Machine (SVM), 
Maximum Entropy (ME), MultiLayer Perceptron (MLP). 

 State of the parser = 〈S, I, T, A〉 = stack, remaining tokens, temporary tokens in the 
stack, arc relation. 

 W = words of the sentence 



 Initial state = 〈(), W, (), ()〉 

 End state = 〈S, (), (), A〉 

 Shift = in a configuration 〈S, n|I, T, A〉, pushes n to the stack, producing the 
configuration 〈n|S, I, T, A〉.  

 Right = in a configuration 〈s|S, n|I, T, A〉, adds an arc from s to n and pops s from 
the stack, producing the configuration 〈S, n|I, T, A∪{(s, r, n)}〉.  

 Left = in a configuration 〈s|S, n|I, T, A〉, adds an arc from n to s, pops n from input, 
pops s from the stack and moves it back to I, producing the configuration 〈S, s|I, T, 
A∪{(n, r, s)}〉.  

 Plus, six others to handle non-projectivity… 

 Essential knowledge consists in performing the correct actions and chosing the correct 
relation label given an input sentence in a language. Actions and labelling are 
performed deterministically according to a feature model. Better the model, better 
the prediction. 



 A simplified example: parse of «Beauty is truth» 

  

   is 

 Pred 

Beauty 

   Sb 

 truth 

Pnom 

Stack Input Action 

Beauty is truth Shift 

Beauty is truth Right 

is truth Shift 

is truth Left 

is 

‘is’ corresponds to a predicate: as it is the root, it means that the sentence is complete. 

In other terms, the last state is a final state, hence the sequence is accepted. 

The table accounts only for arc creation: labelling takes place simultaneously with Left 

and Right but here is shadowed for sake of simplicity. Also, I abstracted from the 

temporary stack column, useful for non-projective trees only. 

The model posits as conditions for a given action the presence in input and stack of 

specific elements with specific properties. 



A CASE OF STUDY: MEDIEVAL LATIN 

  

Passarotti & Ruffolo (2010)   Passarotti & dell’Orletta (2010) 

  

  

  

  

  

 DesR with Italian/Czech feature model  DeSR with ad hoc feature model  

  

Parser LAS UAS 

DeSR 71,26 78,35 

Malt 69,85 75,87 

ISBN 68,97 77,79 

MST 68,79 79,43 

Data set Tokens 

Training 61024 

Test 7379 

Data set Tokens 

Training 44195 

Test 5697 



Feature Tokens 

LEMMA -2 -1 0 1 2 3 prev(0) next(-1) leftChild(-1) leftChild(0) rightChild(-1) rightChild(0) 

POSTAG -2 -1 0 1 2 3 prev(0) next(-1) leftChild(-1) leftChild(0) rightChild(-1) rightChild(0) 

CPOSTAG -1 0 1 2 

FEATS -1 0 1 2 

DEPREL rightChild(-1) 

HEAD -1 0 

Filter = manual selection as a preprocessing step, independently by the algorithm. 

 

Usefulness of tailor-made feature model: 

Reduces overfitting, hence increases performance. 

Reduces model dimension, hence complexity, hence computational time. 

Improved model interpretability. 

 



  

 Results on dataset of Passarotti & Ruffolo (2010) 

  

  

Results on dataset of Passarotti & dell’Orletta (2010) 

  

  

  

Dataset size has a great impact on performance! 

  

 * Both experiments use Support Vector Machines (SVMs) as algorithm. SVMs represent 
examples as points in space, maximizing the geometrical gap among separate classes. For non-
binary tasks, they are implicitly mapped to a multi-dimensional space.  

Parser Algorithm Direction LAS UAS 

DeSR SVM* LR 73,73 79,90 

Parser Algorithm Direction LAS UAS 

DeSR SVM LR 78,26 83,9 

DeSR SVM RL 76,31 82,38 



POSTPROCESSING TECHNIQUES: 
REVISION… 

 Attardi & Dell’Orletta, 2009 

 Stacked parsing has two phases: 

 1) Sentence is parsed with a low-performing algorithm. 

 2) A second parser with high-performing algorithm learns from the output of 1) in 
reverse mode (i.e. in opposite direction), using additional features. 

 They adopted these names for stacked parsers: 

 Rev2 = 1) ME LR 2) SVM RL 

 Rev3 = 1) ME RL 2) SVM LR 

Parser Predictor LAS UAS 

DeSR Rev2 77,30 82,82 

DeSR Rev3 79,27 84,63 



…AND COMBINATION 

 Consider a set of predictors. 

 The ensemble of their outputs will outperform the output of a single predictor, given a 
sufficient accuracy and diversity of the set members. 

 Ideally, predictors should be statistically independent. But: too much data required. 

 Post-processing technique. Outputs with predicted values are combined. 

 Surdeanu and Manning (2010) 

 The most common function is based on unweighted voting. The value voted by the 
majority is selected. As accurate as more complex functions. 

 Linear-time re-parsing algorithms guarantee well-formed dependency trees. 



Combined predictors LAS UAS 

SVM-rev3 + SVM-RL + SVM-LR 80,02 85,23 

SVM-rev2 + SVM-rev3 + SVM-RL 79,82 85,08 

SVM-rev2 + SVM-rev3 + SVM-LR 79,21 84,67 

SVM-rev2 + SVM-RL + SVM-LR 78,91 84,36 

This is the state of the art in literature! 



NEW IMPROVEMENTS 

  

 Key ideas: 

  

 Combining not  different predictors from the same parser, but different parsers. 

 Training over a far richer dataset. 

 Experimenting new feature models. 



 Parser #2: MATE graph-based 

 Bohnet (2010) 

 Graph-based parser = each sentence is processed as a whole. A global optimization 
criterion is adopted to best fit the data. 

 Multi-digraphs (MDG) are sets of nodes V and oriented arcs A, allowing multiple arcs 
between any pair of nodes.  

 A spanning tree (ST) is a subgraph of a MDG, G’ = V’, A’) such that: 

 1) The set of nodes is identical. V = V’ 

 2) The set of arcs of MDG includes that of ST. A ⊆ A’ 

 3) The cardinality of its arcs equals that of its nodes minus 1.|A’| = |V’| - 1 

 4) G’ is an acyclic graph.  



 Given an MDG, let T be the set of its STs. 

 Maximum spanning tree problem is finding the member of T that maximizes a given 
function. 

 In dependency parsing terms, given a set of possible trees for an imput sentence, a 
predictor should select the most plausible one. 

 How is the problem solved? Decomposing the tree into factors and weighting them. 

 Factor = head, dependent, label. Quadratic complexity. 

 Example taken from MacDonald and Nivre’s slides: 



 In MATE graph-based parser: 

 

 2nd-order maximum spanning tree (MST) + passive-aggressive perceptron. 

 2nd-order uses more factors (grandchild, label to sisters…). Complexity = 𝑂(𝑛4). 

 Passive-aggressive perceptron: each iteration weight realignment becomes softer. 

 Plus, non-projective approximation algorithm and a feature extraction component. 

 Marries high accuracy with fast parsing. 

  

  

  



 Algorithm of graph-based MATE-tools 

 y = gold 

 for n  1 to E // iteration over the training epochs 

     for i  1 to I // iteration over the training examples 

   k   (n − 1) * I + i 

   γ   E * I − k + 2 // passive-aggressive weigths 

   A  extract-features-&-calculate-arrays(i, w) 

   p  predict-projective-parse-tree(A) 

   a  non-projective-approximator(p,A) 

   update w, v according to ∆(p, y) and γ 

 w = v/(E * I) // average 



 Parser #3 = MATE transition-based 

 Bohnet et al. (2013) 

  

 Shift-Reduce. Operations Left-Arc, Right-Arc, Shift, Swap (for non-projectivity). 

 Designed for free-word-order and richly inflected languages. 

 Joint morphological disambiguation and dependency parsing (vs pipeline). 

 4 labelling functions for pos, morphological features, lemma and dependency relation 

 A transition sequence is an ordered set of state-transition pairs. 

 Candidate parses for a sentences are scored via the transition system leading to 
them, directed by features and weights. 

 Uses beam search for exploring the search space (here very large!) of parses, better 
than greedy deterministic algorithms. In a graph, expands most promising node up to 
a limit (or up to when gold parse is pruned from the beam in learning). 

  

  

  

  



New (simplified and better-performing) feature model: 

 

 

 

 

 

 

A wider dataset. Summa contra gentiles partes 1-2: 

  

  

  

Feature Value 

LEMMA -2 -1 0 1 2 3 prev(0) next(-1) leftChild(-1) leftChild(0) rightChild(-1) rightChild(0) 

POSTAG -2 -1 0 1 2 3 prev(0) next(-1) leftChild(-1) leftChild(0) rightChild(-1) rightChild(0) 

CPOSTAG -1 0 1 2 

FEATS -1 0 1 2 

DEPREL rightChild(-1) 

HEAD -1 0 

Dataset Tokens 

Training 152210 

Test 16935 



 Results for single predictors: 

  

  

  

  

  

 Results for combination: 

  

  

Parser LAS UAS # 

desr LR 79,91 85,97 1a 

desr RL 81,36 87,2 1b 

mate 76,75 84,41 2 

joint (pre-lemmatized) 80,06 86,12 3 

Combination LAS UAS 

1b+3+1a+2 84,4 89,6 

1b+3+1a 83,9 89,2 

1b+1a+2 83,3 88,6 

New best result! 

+4,4% in LAS 

+4,4% In UAS 

compared with state of art. 
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